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This is the supplementary material for “Boosting Vector Calculus with the Graphical Notation.”
It is written for students and introduces instructive and practical examples regarding graphical
vector and tensor algebra and calculus in the physics context. Notable topics, including the ones
mentioned in the main article, are as follows. Graphical proof of the Jacobi identity is discussed
in P6a and its sequels in the following two sections. Next, most importantly, graphical proof of
first and second derivative vector calculus identities are covered in Sections I B 1 and I B 2. Then,
the strength of the graphical technique of tensor calculus is elaborated throughout Section I C.
Graphical notation for general multi-index quantities is introduced in Section I C 2. Do not miss
the next section, Section I C 3, to learn the “arrow pushing” that enables to efficiently denote and
explain the invariance property of tensorial expressions. Finding the oblivious δ(3)(~r) term and
the calculus of multipolar fields are discussed throughout Sections I C 5 and I C 6. Section I A 4
introduces permutation symmetry of indices. Refer to the comments in A67b for an instructive
example of diagrammatic perturbation in statistical mechanics. Lastly, Section I D invites the
reader into the world of Feynman diagrams.

Difficulty Levels

Without mark: essential or elementary.
With [?] : intermediate level, adequate for advanced mathematical

physics courses.
With [ ! ] : challenge only if you find yourself relishing graphical

reasoning or you want to be a true “virtuoso.”

I. Problems

A. Graphical Vector Algebra

1. Basic Translation Tasks

A possible calculation strategy is to translate the plaintext
equations into graphical notation, proceed by graphical manip-
ulations, then return to the plaintext notation if the answer is
required to be written in the plaintext notation. If you become
a true “bilingual,” translating one to the other will not bother
you anymore. The problems in this section is for practicing such
translation tasks.

P1 Draw corresponding diagrams for each of following plain-
text expressions, and then give at least one alternative
reading in index-free plaintext notation.

(a) ~A · ( ~B × ~C) (b) ~A× ( ~B × ~C)

(c) ( ~A× ( ~B × ~C)) · ~D
P2 Draw corresponding diagrams for each of following plain-

text expressions, and then give at least one alternative
reading in the index notation.

(a) AiBlCmεijkεklm (b) AmBkδijδmlεlkj

(c) AiBjCkεimjεlkm (d) AlBmεiljεjmi

(e) AiBkCnεijmεklnεjlm

P3 Translate diagrams in Table I into plaintext (index-free or
index) notation. Attach index markers to the diagrams
adequately if needed.

P4 Use the economy of the graphical notation to show that

( ~A × ~B) · (~C × ~D) = ~A · ( ~B × (~C × ~D)): that is, show
that the both sides of the equation are just two different
readings of an identical diagram.

P5 Graphically represent the following plaintext equations.

(a) ( ~A× ~B)× (~C × ~D) = ( ~D × ~C)× ( ~A× ~B)

(b) εikjεjliAkBl = −εijlεijkAlBk
(c) εijkAiBjCk = εijkAjBkCi

P6 Translate the following graphical equations into the plain-
text notation. (You don’t need to prove them.)

(a)

A B C

+

B C A

+

C A B

= 0

(b)
A B

=
B A

−
A B

A B
A B

C

A

B

A
B

(a) (b) (c) (d)

B C

A D

E

C

A D

E

B C

A D

(e) i. ii. iii.

(f) (g) (h) (i)

TABLE I. Diagrams for P3.
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P7 Prove that ~A× ~A = 0 in the graphical notation, and then in
the plaintext notation. Show the correspondence between
two proofs by pairing each step.

P8 Prove the following graphical identity for a unit vector
~n (i.e., ~n · ~n = 1) in the graphical notation, then in the
plaintext notation. Show the correspondence between two
proofs by pairing each step. [Note: this is a linear map
that projects out the component parallel to ~n.]

−
n n

= − n n (1)

P9 Confirm that the above ~n-projector is idempotent by dia-
grams. That is, if we call Eq. (1) by “ ,” show that

= .

2. See the Bones, Attach the Flesh Pieces

P10 Show that ( ~A× ~B)·(~C× ~D) = ( ~A· ~C)( ~B · ~D)−( ~A· ~D)( ~B · ~C)

and the BAC-CAB rule ~A× ( ~B× ~C) = ~B( ~A · ~C)− ~C( ~A · ~B)
are daughters of the same tensorial structure, = − .
List all the algebraic identities that originate from =
− , in the plaintext notation.

P11 P6a is called the “Jacobi identity.”

(a) Prove the Jacobi identity using = − . Reduce
each term into smaller units, and show that they can-
cel out one another.

(b) Generate all vector algebraic identities that are iden-
tical to the Jacobi identity. [Hint : extract the bones
first, then attach the flesh pieces one by one.]

3. Epsilon Networks (Essential)

Now, we abstract out the flesh pieces and investigate the world
of bones. First, consider identities involving two cross product
machines.

P12 By joining (contracting) the terminals of = − , we
can obtain derived identities.

(a) Join two terminals of = − , and obtain a non-
trivial identity. [Answer : = −2 .]

(b) Join the two terminals of the identity you obtained
from the previous question. What identity do you
get? [Answer : = −6 .]

(c) Prove the identities obtained in P12a and P12b using
the plaintext notation.

Next, let’s move on to identities involving three cross product
machines.

P13 Have some fun playing with the cross product machines.
Take out three cross product machines from the toy box
and assemble them into various configurations. Find con-
nected nonzero expressions as many as you can. For ex-
ample, exclude diagrams such as or , which are
disconnected or zero due to the knot at its rightmost part,
respectively.

P14 How can you classify the diagrams you obtained in P13?
A possible criterione is to divide them in terms of the num-
ber of loops they contain. If a diagram doesn’t have any

loops, it is a “tree-level diagram.” Then we have “one-loop
diagrams,” “two-loop diagrams,” and so on. Classify your
diagrams by their loop numbers.

P15 According to the terminology for Feynman diagrams, “one-
particle irreducible diagrams” (abbreviated as “1PI dia-
grams”) are diagrams that cannot be split into two pieces
by cutting an internal line. For example, is not a 1PI

diagram ( or ), but is. Find all 1PI diagrams
that can be built from three cross product machines and
reduce them into lower-epsilon terms until it becomes im-
possible to break them down further by the two-epsilon
identities in P12 (because the two-epsilon identities re-
duces a two-epsilon subdiagram into a zero-epsilon subdi-
agram, there will remain one epsilon in each term of the
final expression).

How do three-epsilon networks play a role in real use? First,
consider the following three-terminal one-loop diagram, which
you may have obtained in P15.

= − (2)

P16 The proof of the Jacobi identity in P11a proceeds with
breaking down all the terms into expressions of lower-
epsilon level (expressions that has less cross product ma-
chines). The resulting six terms cancels one another. In-

stead of that, however, start from and rather “climb

up the stairs” so that move on to four-epsilon expression,
then to the desired result. Use Eq. (2) and a two-epsilon
identity during the process. Keep in mind the lesson here:
sometimes, going up can provide a shortcut.

Meanwhile, a tree-level three-epsilon diagram also comes into
play in vector algebra.

P17 Construct a vector algebra identity based on the two pos-

sible expansion of a three-epsilon composition . First,

apply = − to the adjacent cross product ma-
chines on the left side, then on the right side. [Answer :

( ~A · ~B× ~C) ~D = ~A( ~B · ~C× ~D)− ~B( ~A · ~C× ~D)+ ~C( ~A · ~B× ~D).]

If you want, you can spend your time playing with higher-epsilon
diagrams. Penrose1, for example, provides more identities, so
you may want to check it.

4. Epsilon Networks (Advanced)

This section introduces the concept of the antisymmetrizer
and the consequences of permutation symmetry of diagrams
(Jucys-Levinson-Vanagas theorem or Schur’s lemma) in a con-
cise manner. There are good references2,3 regarding this subject,
so we rather mention only the essentials.

Until now, = − has been utilized as the fundamen-
tal identity that enables us to proceed all calculations. It was
instructive to introduce the graphical vector algebra by such
manner, instead of giving all the details in a rigorous and logi-
cally preferred order from the beginning. In fact, however, the
fundamental two-epsilon identity is not = − but the
following,

− = 3! , (3)
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where a thick line over three Kronecker delta lines means that
they are totally antisymmetrized, i.e.

:=
1

3!

[
+ + − − −

]
(4)

=
1

3

[
+(−)3+(−)1

]
, (5)

:=
1

2!

[
−

]
. (6)

The minus sign in Eq. (3), the “master” identity, is due to our
convention that reads terminals of a cross product machines
anti-clockwise. 3! is due to normalization convention, which is
optional. In the plaintext notation, Eq. (3) reads “εijkεlmn =

3!δi[lδ
j
mδ

k
n].”

4 Antisymmetrizing four Kronecker deltas gives zero

in three-dimensions, i.e. = 0, because there cannot exist four
linearly independent vectors.

P18 [?] Confirm that = − can be derived from Eq. (3)
by diagrams. (How is it compared to using the plaintext
notation?)

P19 [?] Confirm that the identity in P17 can be derived from
= 0.

For later purposes, we define the symmetrizer too. It is defined
as averaging all permutations of indices. For example, :=
1
2!

[
+

]
. is defined similarly: just change all minuses into

pluses in Eq. (4).

P20 Confirm that + = , but + 6= .

One can prove Eq. (3) from the identity in P17,2 but the
calculation is tedious. Instead of that, the observation that the
three upper terminals of the left hand side of Eq. (3), , are to-
tally antisymmetric as much as the three lower terminals implies
that it is proportional to .5 Then, the proportionality constant
can be determined by appropriate contraction of terminals.

P21 [?] Prove Eq. (3) by such “appealing to symmetry” method
we just described.

P22 [?] This strategy is readily applied to other multi-terminal
cases. Schur’s lemma says that any two-terminal epsilon
network is proportional to Kronecker delta. Prove =
−2 from Schur’s lemma.

P23 [?] Prove Eq. (2) by appealing to permutation symmetry,
provided that = 6.

P24 [?] Any one-terminal epsilon network (which is called a
“tadpole diagram” in the terminology of Feynman dia-
grams) must be equal to zero. Explain why.

Note that students themselves, by doodling the graphical alge-
bra, can find the fact that “a compound n-terminal object that
has a permutation symmetry can be reduced into a simpler ex-
pression of the same symmetry up to a proportionality constant”,
as mentioned in the main article.

B. Graphical Vector Calculus

1. First Derivatives

P25 There are six first derivative identities, and the missing
ones in the main article are the following two. Prove these
by the graphical notation.

(a) ∇ ·
(
f ~A
)

= f ∇ · ~A+∇f · ~A
(b) ∇×

(
f ~A
)

= f ∇× ~A+∇f × ~A

P26 Express the following identity by diagrams.

(∇× ~A) · (∇× ~B) =
∂Aj
∂xi

∂Bj
∂xi
− ∂Aj
∂xi

∂Bi
∂xj

(7)

P27 Prove the following identities by diagrams. The expression

∇̇
(
~̇A · · ·

)
means that the differentiation operates on ~A only

(Hestenes’ overdot notation).6

(a) ∇
(
~A · ( ~B × ~C)

)
= ∇̇

(
~̇A · ( ~B × ~C

)
+ ∇̇

(
~A · ( ~̇B × ~C)

)
+

∇̇
(
~A · ( ~B × ~̇C)

)

(b) ∇̇
(
~̇A · ( ~B× ~C)

)
=
(
( ~B× ~C) ·∇

)
~A+( ~B× ~C)× (∇× ~A)

P28 Calculate ∇(~n), where ~n := ~r/r is the unit radial vector.
[Answer : r−1 times the ~n-projector, Eq. (1)] Can you give
this result a geometric interpretation?

P29 Graphically represent the identity “∇·(~n/r2) = 4πδ(3)(~r).”

2. Second Derivatives

We already mentioned in the main article that (∇×∇) van-
ishes as an operator identity for well-behaved tensor fields, i.e.,

(∇×∇)f = 0, (∇×∇) ~A = 0, or (∇×∇)(any well-behaved ten-
sor field) = 0.

P30 The following three are second derivative identities that
are commonly mentioned in the literatures. Prove these
by the graphical notation.

(a) ∇×∇f = 0, ∇ · (∇× ~A) = 0

(b) ∇× (∇× ~A) = ∇(∇ · ~A)−∇2 ~A

P31 We are now going to study the Laplacian operator. Prove
the following identities by diagrams.

(a) ∇2(f g) = g ∇2f + 2∇f · ∇g + f ∇2g

(b) ∇2(f ~A) = ~A ∇2f + f ∇2 ~A+ 2(∇f · ∇) ~A

(c) ∇2( ~A · ~B) = ~A · ∇2 ~B − ~B · ∇2 ~A + 2∇·
(
( ~B · ∇) ~A +

~B × (∇× ~A)
)

P32 [?] Calculate the following expressions by diagrams. Note
that ∇2~r = 0.

(a) ∇2r, ∇2~n (b) ∇2z

(c) ∇2(r2), ∇2(3z2 − r2), ∇2(x2 − y2), ∇2(xy)

(d) ∇2
(
z(5z2 − 3r2)

)
, ∇2

(
x(5z2 − r2)

)
, ∇2

(
z(x2 − y2)

)
,

∇2
(
x(x2 − 3y2)

)

P33 Proving Bernoulli equation for the case of incompressible
potential flow involves the following index gymnastics: (~u ·
∇)~u = 1

2∇
(
~u · ~u

)
, where ~u(~r) is a vector field that can be

written as ~u(~r) = ∇Φ(~r) for some scalar field Φ(~r). Prove
this by diagrams.

P34 When deriving the vorticity equation, one takes curl to the
Navier-Stokes equation. Prove that for a vector field ~u(~r),
∇×

(
(~u·∇)~u

)
= (~u·∇)

(
∇×~u

)
+(∇·~u)(∇×~u)−

(
(∇×~u)·∇

)
~u

using diagrams.

Identities of higher order derivatives can be obtained by com-
binations of first and second order identities. Since they do not
illustrate the unique power of graphical calculus much, we choose
not to discuss higher-order identities in detail.
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P35 Graphically represent the operator identity ∇2∇ = ∇∇2

for well-behaved tensor fields.

P36 When studying spherical waves, a useful fact is that if
ψ(~r) satisfies the Helmholtz equation, (∇2 + k2)ψ(~r) = 0,
then ~r × ∇ψ(~r) satisfies the vector Helmholtz equation,
(∇2 + k2)

(
~r ×∇ψ(~r)

)
= 0. Prove this using the graphical

notation.

3. Graphical Notation for Integral Calculus

According to the graphical notation for scalars, vectors, and ∇
discussed until now, the curl theorem,

∫
S d

2~a ·∇×A =
∫
∂S d

~l · ~A,
can be written as the following.

. (8)

∂ is the boundary operator, and S is a surface. Here, one can
observe that A is rather a “dummy” vector field and extract
the “essence” of the curl theorem as

. (9)

In the plaintext notation, Eq. (9) will be written as
∫
S d

2~a ×
∇ [· · · ] =

∫
∂S d

~l [· · · ]. Understanding the curl theorem in this
form is in many ways useful. For example, inserting a scalar

field f(~r) gives
∫
S d

2~a × ∇ f =
∫
∂S d

~l f . Or, inserting ~r then

taking cross product derives the vector area formula
∫
S d

2~a =
1
2

∫
∂S ~r × d~l as

r r2− .
(10)

Now, although it is not necessary, one would feel an “im-
pulse” to express Stokes’ theorems completely in diagrammatic
terms. Let us see if we can, anticipating the insight that the
graphical language will provide. One possible way of graphi-
cally denoting integrals is to treat dummy variables of integrals
analogous to dummy indices in tensor expressions; the result-
ing notation shares the same ground with the graphical ver-
sion of bra-ket notation.7 However, when it comes to Stokes’
theorems, we would like to suggest a different approach high-
lighting the trading between ∇ and ∂. In this approach, the

gradient theorem,
∫
P d
~l · ∇f =

∫
∂P f , where ∂P = +(endpoint

of P)− (starting point of P) for a path P, is expressed as

f

P
=

P

f
. (11)

Note that the scalar field f in Eq. (11) is also a “dummy” field

as ~A in Eq. (8) did. Omitting f , Eq. (11) becomes

P
=

P
, (12)

i.e., flipping the balloon inside out. When a balloon swallows a
manifold P, it becomes “differentiated:” ∂P. This is a graphical
manifestation of the pairing of differential forms and chains in
a de Rham-theoretic manner, namely, 〈P, df〉 = 〈∂P, f〉. When
a manifold and a tensor field are met, they produce the “con-
traction,” i.e., the value of integration of the tensor field on the
manifold. Contraction between a manifold and a field is denoted
just by juxtaposing them, where Stokes theorem translates to
flipping the differentiation balloon inside out.

What about curl and divergence theorems? To be specific,
Eq. (11) used the following substitution.

∫

P
dli ↔ P

i

and

∫

∂P
↔

P
(13)

For the divergence theorem,
∫
V d

3x ∇ · ~A =
∫
∂V d

2~a · ~A for a

volume V, one can guess that a substitution
∫
V d

3x↔ can be
made. Then, the left hand side of the divergence theorem can
be written in a completely graphical form. After that, flipping
the balloon will generate the right hand side. The result is the
following.

A
=

A (
simple
version

)
(14)

Then, it follows that
∫
∂V d

2ai ↔ i . In case of the curl
theorem, substitutions

:= and := (15)

make Eq. (9) to be represented in the “flipping balloon” form.

= . (16)

The origin of these substitution rules can be consistently ex-
plained by employing the framework of differential forms; this
will interest more mathematically sophisticated readers. In fact,
index gymnastics with , , and so on corresponds to ma-

nipulating differential forms. Our convention is to represent the
integration over an n-dimensional manifold as a totally antisym-
metric n-legged black rectangle. However, the divergence theo-
rem Eq. (14) appears to be an exception, because the integration
over a volume V was earlier denoted as a zero-legged object as∫
V d

3x ↔ . To be consistent with Eq. (12) and Eq. (16), the
divergence theorem should be written as the following.

= (17)

is a totally antisymmetric three-legged object that denotes
the integration over V. To be concrete, its components may be
identified with 3!

∫
dλ1dλ2dλ3 (∂X[i/∂λ1)(∂Xj/∂λ2)(∂Xk]/∂λ3),

where ~r = ~X(λ1, λ2, λ3) is a parametrization of V. Then, when

an identification = 1
3! is made, index gymnastics show
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that Eq. (17), when contracted with A , is equivalent to the

form first introduced, Eq. (14) (exercise!). One of the equations
that appears during the index gymnastics is the following.

−
3

A
=

A
(18)

This corresponds to d( 1
2!εijkAk dxi ∧ dxj) = (∇ · ~A) 1

3!εijkdxi ∧
dxj ∧ dxk in the calculus of differential forms, where d is the
exterior derivative.

C. Graphical Tensor Calculus

1. Symmetric Rank-2 Tensors

Welcome to the world of tensors, finally. Graphically, ten-
sors are nothing but multi-terminal objects: monopods, dipods,
tripods, tetrapods, and so on. We already mentioned the graph-
ical notation for symmetric dipods in the main article. Let us
do a little stretching first with the inertia tensor. The inertia
tensor of a rigid body is defined as follows.

∫
dm

r

r

ω

=

ω

I:=

L

= (19)

The integral is over infinitesimal mass elements of the body,
which is labelled by ~r.

P37 Confirm that the inertia tensor is symmetric under swap-
then-yanking of the external arms of the shaded expression
in the middle of Eq. (19).

P38 The mass quadrupole moment Qij , a rank-2 symmetric
tensor, is defined as Qij =

∫
dm 1

2

(
3xixj − r2δij

)
. Graph-

ically represent this equation.

P39 Calculate the trace of the inertia tensor and the mass
quadrupole moment, respectively, by diagrams. That is,
calculate Iii and Qii.

P40 Prove that Qij = − 3
2Iij + 1

2δijIkk by diagrams.

Now, we move on to electromagnetism. Consider the elec-
tric quadrupole radiation of a monochromatic source ρ(t, ~r) =

%(~r)e−iωt and ~J(t, ~r) = j(~r)e−iωt localized in V near the ori-
gin. Define the electric quadrupole moment with %(~r), i.e.,
Qij :=

∫
V d

3x %(~r) 1
2

(
3xixj − r2δij

)
. An examination of the or-

ders of r and ω reveals that the radiation electromagnetic fields
are given as follows.

E
= −µ0

c2
eiω(r/c−t)

6πr

iω3

2

[
Q

n

− n

n

Q

n ]
(20)

B

=
1

c
n E

= −µ0

c3
eiω(r/c−t)

6πr

iω3

2

[
Q n

n

]
(21)

P41 [?] Calculate the time-averaged Poynting vector, ~S =
1

2µ0
Re ~E∗× ~B, with Eq. (20) and Eq. (21). This will yield a

huge tensorial expression, which, however, can be reduced
wisely with the guidance of the graphical notation. Decide
which “knot” is the best to cut off first.

Before closing this section, we present another electromagnetism
example that involves a considerable use of index gymnastics,
while the graphical notation effectively boosts the speed and
helps us grasp the contraction structure in a bird’s eye view (cf.
the process with the plaintext notation, given in the literature8).

P42 [ ! ] Consider electric and magnetic fields ~E(t, ~r ) and ~B(t, ~r )
in a homogeneous but anisotropic linear medium that has
a constant permittivity and permeability matrix of com-
ponents εij and µij in the lab frame, respectively. The
auxiliary fields are given by Di(t, ~r ) = εijEj(t, ~r ) and
Hi(t, ~r ) = (µ−1)ijBj(t, ~r ), where (µ−1)ij is the compo-
nent of the inverse of the permeability matrix. Both the
permittivity and the permeability matrices are symmetric.

(a) Graphically write Maxwell’s equations in media with-
out any free charges and currents. Introducing a new
graphical notation for ∂

∂t depends on your choice.

(b) Consider a plane wave solution and use the substitu-

tion ∂
∂t → −iω and ∇ → i~k. Let the amplitude of

the electric field be ~E0. Let v = k/ω be the phase
velocity. Find the equation that can be used to cal-

culate v2 when ~E0 and the direction of propagation,

~u := ~k/k, are known.

(c) Show that the direction of ~E0, can be found by the
eigenvalue problem Wij(E0)j + v2(E0)i = 0, when ~u
is known. Find the matrix Wij .

(d) If you insist on working further without component-
wise unpacking of the matrices, you will have to cal-
culate Wii,

1
2!εijkεimnWjmWkn, and the determinant

1
3!εijkεlmnWilWjmWkn in terms of ~u and the permit-
tivity and permeability matrices to obtain an analytic
formula of v2. If you have some time to spare and have
finished Section I C 4, have fun with calculating them.

2. Graphical Notation for General Multi-index Quantities

In the main article, we only introduced the graphical notation
for rank-2 symmetric tensors. Now consider a general two-index
quantity (need not be a tensor), Xij . Suppose that Xij has no
symmetry so that Xji is unrelated to Xij . Then, following the
philosophy of self-explanatory design, its graphical counterpart
should be non-symmetrical in its two terminals, which becomes
different when it is ”swap-then-yanked.”

Xij = i jX (22)

A designer’s choice that suffices these requirements is a bead
that has a non-symmetrical shape and slides along a line. The
bead is rigid so that the holes that lines come in and out cannot
be repositioned like X −→ X −→ X . Instead,

swap-then-yanking (transposing) works as follows.

Xji = i jX = i jX = i jX (23)
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If Xij = Xji, the designer would advise us to use a symmetric
shape for X, such as an oval, a rectangle, or a diamond. We
used a square in the previous sections. Diagrams for general n-
index quantities are the same. For instance, a possible graphical

representation of a general 5-index quantity, Kijklm, is
i j k

lm

K .

3. Rotational Symmetry and Contra/Covariance

To be called a “tensor,” a multi-index quantity must be en-
dowed with invariance property. Suppose we actively transform
the vector ~r = xi~ei by ~r ′ = Rijxj~ei, where (Rij) is a spe-
cial orthogonal matrix (i.e., encodes proper rotation) so that
(Rij)

> = (Rij)
−1 and det(Rij) = +1. In the graphical notation,

r′ = r , (24)

where Rij := i j instead of i jR to avoid clutter. (Let
blank triangles always denote the rotation matrix from now on.)

P43 Rij satisfies RikRjk = δij and RkiRkj = δij . Graphically
represent these equations. [Answer : = =

. Opposite arrowheads are pair created or annihi-
lated! ]

P44 There is one more constraint: det([Rij ]) = +1.

(a) Show that is totally antisymmetric in its three

terminals so that is equal to .

(b) Using det([Rij ]) = 1
3!εijkεlmnRilRjmRkn and Eq. (3),

conclude that = .

(c) Confirm the following “propagation of arrowheads”
or “arrow pushing” holds.

= = =

P45 [ ! ] This problem is just for fun. Simplify the following
diagrams (minimize the number of cross product machines
and arrowheads, respectively).

A

(a) (b) (c) (d)

When r → r , a tensor dresses outgoing arrowheads
in its all terminals. For example, the inertia tensor defined by
Eq. (19) transforms by the following, so it is indeed a tensor.

I ′ =

∫
dm′

r′
r′ =

∫
dm

r
r

= I , (25)

P46 Confirm the last equality in Eq. (25).

P47 Prove that the mass quadrupole moment defined in P38
is a tensor.

P48 When ~A and ~B are vectors, i.e., A′i = RijAj and B′i =

RijBj , show that ~A · ~B and ~A × ~B are a scalar and a
vector, respectively, using the graphical notation.

P49 [?] Consider a rank-2 tensor Tij .

(a) Show that trT = Tii is a scalar.

(b) Show that T[ij] = 1
2! (Tij − Tji) is a tensor and in fact

has three independent components so that it can be
encoded into a form of a vector (yet it is not exactly
a vector). [Hint : Do some combinatorics. Then con-
sider εijkTjk. Is it a vector? ]

(c) For Tij = AiBj , calculate trT and the vector you got
in the last question. What are they?

P50 [?] Decomposition of a rank-2 tensor into irreducible rep-
resentations of SO(3). As you might already have caught
the idea in the previous problem, a rank-2 tensor Tij has
many faces: the scalar times δij (trace-only part), the part
that can be encoded as a vector (antisymmetric part), and
lastly, the remainder, a symmetric traceless rank-2 tensor.
Thus, we have decomposed Tij into parts that transforms
differently under rotation. Show that this can be writ-
ten as Eq. (26). Check that the numbers of independent
components are 1, 3, and 5 for the three parts, respec-
tively. These numbers may remind you of the degeneracies
of spin-0, 1, and 2 angular momentum eigenstates. In fact,
we call the three parts “spin-0,” “spin-1,” and “spin-2”
part, respectively.

(26)

If you want to distinguish between contravariant and covari-
ant indices, restrict the terminals to be always vertical. Termi-
nals heading up corresponds to contravariant indices and termi-
nals heading down corresponds to covariant indices. Invariant
tensors are denoted as follows: (Euclidean) metric tensor and

its inverse δij =
i j

and δij =
i j

, Kronecker delta δij =
j
i ,

the metric volume form and its index-raised version εijk =
i j k

and εijk =
i j k

. We follow Penrose9 for the design of εijk
and εijk. For three-dimensional Euclidean space, εijk and εijk

can be “heterarchized,” i.e., we can substitute
i j k

→
i j k

and
i j k

→ −
i j k

. A rank-2 contravariant tensor, a (20)-tensor, Xij ,

transforms as
X
→

X
. If the two indices are lowered by the

metric, we have a rank-2 contravariant tensor, a (02)-tensor, Xij :

X
→

X
. Contravariant indices get dressed with upward

arrowheads, and covariant indices get dressed with downward
arrowheads. Graphical calculus with this “up-down hierarchy”
indeed has a beautiful and neat syntax; however, we decided not
to unnecessarily pursue the distinction between covariant and
contravariant indices which might confuse the readers who are
mathematically unsophisticated. Penrose9, for example, will be
helpful to interested readers.10

P51 [?] Based on our definition of the inertia tensor, the tensor

connecting two vectors ~L and ~ω, what kind of rank-2 tensor
should the inertia tensor be, among

(
2
0

)
, (11), and (02)?

P52 [?] Write Eq. (3), = − , = −2 , and = −6
in the graphical notation that distinguishes contravariant
and covariant indices.



7

4. Rotation Matrix

The previous section studied how tensors get dressed with
rotation matrices, Rij = i j , when rotated. Now, let us
focus on the rotation matrix itself. Denote the rotation matrix
that encodes a rotation with respect to an axis, specified by a
unit vector ~n, with an angle α as

n, α
i j .

P53 (a) For infinitesimal ε, show that
n,ε

= +
ε

n
up to O(ε1).

(b) Calculate the commutator between infinitesimal rota-
tion matrices, i.e.,

n,ε n′,ε
−

n,εn′,ε
, up to O(ε2).

P54 [?] n is called the generator of rotation.

(a) It is a rank-2 tensor—what representation does it live
in? [Answer : rank-2, spin-1 ]

(b) Show that − ex ex − ey ey − ez ez is propor-

tional to Kronecker delta. The proportionality con-
stant is called the quadratic Casimir.

P55 [?] Generally, a tensor A is called (minus of) the Hodge

dual of a vector ~A. Let us study its algebra. Calculate the
following. (tr of a two-terminal diagram means joining the
terminals by Kronecker delta: taking a trace.)

(a) tr
(

A

)
, tr
(

A B

)
, tr
(

A B C

)

(b)
(

n

)k
:=

k︷ ︸︸ ︷
n n

· · ·
n

P56 [?] Now, let us exponentiate the infinitesimal rotation (ro-
tation algebra) to obtain non-infinitesimal ones (rotation

group);
n,α

= lim
N→∞

(
n, αN

)N
= exp

(
α

n

)
. Calcu-

late this and obtain the Rodrigues’ rotation formula.

P57 [?] Given a rotation matrix Rij , how can one figure out its
rotation angle and rotation axis?

(a) Show that tr
(

n,α

)
= 1 + 2 cosα.

(b) As you might discovered while playing with P45,

= . What does this mean?

(c) The previous two problems are related to the spin-0
and spin-1 parts of

n,α
, respectively. What is its

spin-2 part?

5. Finding the Oblivious Delta Term

In electromagnetism, the fields that Gilbert and Ampère (or,
electric and magnetic) dipole moments (denoted ~p and ~m below)
generate contain delta function terms as the following.

−∇
(
~p · ~n
4πr2

)
=

3~n~n · ~p− ~p
4πr3

− 1

3
~p δ(3)(~r) (27)

∇×
(
~m× ~n
4πr2

)
=

3~n~n · ~m− ~m

4πr3
+

2

3
~mδ(3)(~r) (28)

Undergraduate education used to avoid tensorial expressions so
that somewhat long approaches are required to derive these
identities.13,14 However, tensor calculus allows one to alge-
braically obtain the delta function terms in dipolar fields, and
we discuss its graphical form.

P58 [?] Show that applying the decomposition Eq. (26) to
∂i(nj/r

2) reads as the following.

r2
n

=
4π

3
−

r3
nn3 −4π

3
δ(3)(�r)

(29)

P59 Derive Eq. (27) and Eq. (28) from Eq. (29).

P60 [?] Consider a stationary flow ~u(~r ) of an incompressible
(∇·~u = 0), viscous fluid at low Reynolds number. The
Navier-Stokes equation reads µ∇2~u − ∇p = 0. A “unit”
nonhomogeneous solution is called Stokeslet: µ∇2~u−∇p =
~fδ(3)(~r).

(a) Show that the pressure field p(~r ) is determined before

knowing ~u(~r ) as p(~r ) = p0 + ~f · ∇ 1
4πr , assuming that

p(~r )→ p0 as r →∞.

(b) Show that ~u(~r ) = − 1
8πµr (~f + ~n~n · ~f ). [Hint: P32a.]

6. Harmonic Tensor Fields

This section is entirely in the [?] level.
Eq. (29) is related to dipolar fields; its generalization to arbi-

trary ranks is related to multipolar fields, which are described
by the spherical harmonics Ym

` (θ, φ). Consider describing scalar
Laplace’s equation ∇2f(~r) = 0 in spherical coordinates. Spher-
ical symmetry tells us that the space of solutions is spanned
by functions of the form R`(r)Y

m
` (θ, φ) with ` = 0, 1, 2, · · · and

m = −`, `+ 1, · · ·+ `.

0 =
1

R`(r)

1

r2
∂

∂r
r2
∂

∂r
R`(r) +

1

r2
1

Ym
` (θ, φ)

°∇2Ym
` (θ, φ) (30)

Here, we defined °∇2 as Laplacian on unit sphere. Since
− °∇2Ym

` (θ, φ) = `(` + 1)Ym
` (θ, φ), R`(r) = r` or 1/r`+1. The

former gives solid harmonics that are not singular at the origin
(“regular” solid harmonics).

While dealing with spherical harmonics, working in Cartesian
coordinates can provide shortcuts in calculations, so we will de-
velop such Cartesian technology in several following problems.
From dimensional considerations, we expect that r`Ym

` (θ, φ) can
be written as a `th-order polynomial of z, x, and y, which are
~r ·~ez, ~r ·~ex, and ~r ·~ey, respectively. This means that there ex-
ists a converter (a bunch of Kronecker deltas) that connects `
~r ’s with ~ez’s, ~ex’s, and ~ey’s of total number ` so that such con-

tractions make r`Ym
` (θ, φ). Denote this “converter” as .

For example, r`Y0
` (θ, φ) ∝ r`P`(~n ·~ez) has no φ dependence so

that ~n and ~ez are the only players; therefore, define by

Eq. (31). Then, allowing ~ex and ~ey to join the game, we get
the spherical harmonics algebraically, rather than the analytic
approach—solving partial differential equation on the sphere for
nonzero m.

P`(~n ·~ez) =

 

n n n

ez ez ez

. (31)

However, Eq. (31) does not determine uniquely: an anti-

symmetric component vanishes when identical vectors are con-
tracted in its indices. Thus, we demand the upper indices to



8

be totally symmetric and so do the lower indices in addition to

Eq. (31). For example, P1(~n ·~n′) = ~n ·~n′ =⇒ = , and

P2(~n·~n′) = 3
2 (~n ·~n′)(~n·~n′)− 1

2 (~n·~n)(~n′·~n′) =⇒ = 3
2 − 1

2 .

Note that 3
2 − 1

2 , 3
2 − 1

2 , or other possibilities such as

1.7
2 + 1.3

2 − 1
2 also gives 3

2 (~n·~n′)2− 1
2 when contracted with

~n in its lower indices and ~n′ in its upper indices but we choose

“the” totally symmetric one, 3
2 − 1

2 .

P61 The converter, , is denoted by a horizontally sym-

metrical shape. Can you explain why would the designer
choose such shape?

P62 [?] Taking Laplacian to r`

n n n

 

=

r r r

 

should give

zero. From this, show that is “traceless,” i.e., it

vanishes when any of its two lower indices are contracted
(the same applies to the upper indices).

P63 [?] From the generating function of Legendre polynomi-
als (the multipole expansion), prove the following. By
“−(traces),” we mean subtracting terms proportional to

and so that the entire right hand side is traceless in
the upper indices and so do in the lower indices.

r

1
 

-( )

 

= - traces

n n n

 
+r 1

 

�!
(32)

P64 [?] So far, we have found that , regarding only its

upper indices, is a rank-` totally symmetric and traceless
tensor (i.e., it lives in the spin-` representation of SO(3)).
The same applies to the lower indices.

(a) Check that tracelessness holds for ` = 2 and 3 by
explicit calculation, given that P2(ξ) = 3

2ξ
2 − 1

2 and

P3(ξ) = 5
2ξ

3 − 3
2ξ.

(b) Also, do the inverse direction: find the coefficients aj

where P4(ξ) =
∑4
j=0 ajξ

j , using the fact that

is a rank-4 totally symmetric and traceless tensor.
(Fix the overall coefficient by P4(1) = 1.)

Note that taking Laplacian to Eq. (32) gives the equality be-
tween ∇2

(
r−`−1Ym

` (~n)
)

and an `th-order, (` − 2)th-order, · · ·
derivatives of delta function, i.e., point multipole sources. Thus,
∇2
(
r−`−1Ym

` (~n)
)

is not zero in physicists’ sense but raises mul-
tipolar singularities at the origin (it is “almost zero”).

P65 [?] Define ~e+ := − 1√
2
(~ex + i~ey), ~e− := + 1√

2
(~ex − i~ey),

and ~e 0 := ~ez (the spherical basis vectors). Comparing
withRefer to the spherical harmonics table, and check that

the first few ones can be obtained by Y+1
1 =

√
3
4π

n

e+

,

Y+2
2 = 2

3

√
15
8π

n n

e+ e+

, Y+1
2 = 2

3

√
15
4π

n n

e+ e0

, etc.

P66 [?] i~
i

is the “spin operator” (of direction ~ei) acting on

vectors. Why?

(a) Show that (i~)2
i j

− (i~)2
j i

= (i~)2
i j

.

How does this coincide with the spin operator you
have learned in quantum mechanics?

(b) Show that i~
e0

em = (−)m~ em , where m =

+1, 0,−1. Thus, em ’s are the eigenvectors of z-
axis rotation.

(c) Show that Y+1
2 (θ, φ) transforms like a vector, partic-

ularly, like ~e+, under infinitesimal z-axis rotation.

(d) Calculate (i~)2
[

+ + 2

]
and explain

its meaning.

P67 [ ! ] Some diagram gymnastics. Calculate the following by
diagrams. (You may wonder where these expressions ap-
pear. The solution to this problem contains an answer for
such curiosity.)

p m

n n n n

4

9

(a) (b) (c)

D. Addendum

1. Quantum Mechanics with the Graphical Notation

The last application of graphical notation to be mentioned is
quantum mechanics. In quantum mechanics, physical quantities
are promoted to non-commuting operators. To denote operators
in the graphical notation, simply place the boxes in a row and
demand the relative positions to be not changed. For example,
the canonical commutation relation [x̂i, p̂j ] = i~δij 1̂, where xi
and pi are the components of the position vector operator ~r and
the momentum vector operator ~p, is denoted as follows.

x̂ip̂j − p̂j x̂i = i~δij 1̂

l

r p

i j

−
p r

i j

= i~
i j (33)

For convenience, introduce the conventional square bracket no-
tation for commutator, instead of inventing a new graphical no-

tation. For example, the commutator of two vector operators ~̂A

and ~̂B, [Âi, B̂j ] = ÂiB̂j − B̂jÂi, is represented as the following.

A B

i j

,

[ ]

:=
A B

i j

−
B A

i j

(34)

Remember that by taking a commutator you should only alter
the order of boxes, keeping the endpoints of the lines (vector
indices) fixed.
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The orbital angular momentum operator is graphically repre-

sented as
L

=
r p

.

P68 Prove the following by diagrams.

(a) ~̂r · ~̂p = ~̂p · ~̂r + 3i~1̂ (b) ~̂r × ~̂p = −~̂p× ~̂r
P69 Graphically represent the so(3) = su(2) commutation rela-

tions, i.e., [L̂i, L̂j ] = i~εijkL̂k. Graphically prove that the
orbital angular momentum satisfies such relation.

P70 Angular momentum operator identities can be quickly de-
rived using the graphical notation. One of the examples

are L̂2 = ~̂L · ~̂L = r̂2p̂2− (~̂r · ~̂p)2 + i~~̂r · ~̂p. Prove this identity
by diagrams.

There are also other miscellaneous identities, such as [L̂2, L̂i]

= 0,
1

i~
r L,

[ ]
=

r
,

r L,

[ ]
=

r L
+

L r
= 2i~

r
,

[
[~̂r, L̂2], L̂2

]
= 2~2(~̂rL̂2 + L̂2~̂r ), etc. One may benefit from using

graphical notation while deriving these identities. We shall omit
the details.

2. Intertwining Different Types of Lines

The graphical notation for operators leads us to an interesting
discussion. First, let us hear the designer’s alternative choice for
denoting noncommutative numbers. Our previous notation can
be made more clear by turning on an “order marker,” like the
following.

ÂiB̂Ĉj ↔
A B

i j

C
(35)

Noncommutativity made explicit: the order of loading boxes
on the “conveyor belt” matters. A vector operator Âi is a

box with a vector tail i and a pair of thick grey lines:
A

i
.

It intertwines two kinds of lines. Note that thick lines are
“left-right hierarchical,” that is, they must be drawn horizon-
tally and lines stemming left and right are distinguished (cf.
“up-down hierarchy” in Section I C 3). Meanwhile, what is
that grey conveyor belt anyway? The answer can be found by
inferring what objects with a thick grey line represent. They
are transformed by objects with one input and one output thick

grey lines, such as
A

i
; they are wavefunctions, i.e., Hilbert

space vectors! For example, 〈φ| Âi |ψ〉 ↔ A ψφ

i

.

Vectors living in the Hilbert space H are represented as the
objects that have one thick grey line. The reason for choosing
a thick line is to imply that it is infinite-dimensional, i.e., wave-
functions ψ(~r) living inH are labelled by a “continuous index” ~r.
Meanwhile, we also have seen finite-dimensional Hilbert spaces in
undergraduate quantum mechanics, such as spin states. For ex-
ample, the spin part of an electron wavefunction lives in a Hilbert
space of complex dimension two. The state vectors are called
spinors: χa = a ∈ H (a = 0, 1). (χ0, χ1) = (1, 0) is the “up”
state, while (0, 1) is the “down” state. Also, there are spin op-

erators (Si)a
b

=
i

a bS acting on spinors ( →
i

S ),

where i = 1, 2, 3. The index i here is an SO(3)-index we have

been always discussing about. The spin operators satisfy the
following commutation relations.

[

i

S
,

j

S
]

=
i

S

j

S
−

i

S

j

S
= i~

i j

S
(36)

As usual, Pauli matrices can be employed to represent the spin

operators as (Si)a
b

= 1
2 (σi)a

b
.

Note that H-lines (spin-1/2 lines, labelled by a, b, · · · ) are be-
ing differently denoted from so(3)-lines (spin-1 lines, labelled by
i, j, · · · ), because the two vector spaces are different. We cannot
connect the two ends of a spin-1 line and a spin-1/2 line directly
such as A . Also, there is no invertible “basis change” ma-
trix that connects one spin-1 and one spin-1/2 line. Even the
dimensions are different—3 and 2. We must use appropriate con-
verters (invariant symbols). What we expect from such convert-
ers is a “proper propagation of arrowheads.” For example, ro-
tating an SO(3)-vector translates into unitary transformation of
the corresponding spinor in the spin-1/2 language; that is, there
is a correspondence between a rotation matrix Rij = i j

and a unitary matrix Ua
b = a b. The translator in charge is

the spin operator (Si)a
b

=
i

a bS .

i

S

−→
i

S

=

i

S

χ̄a(Si)a
b
χb −→ χ̄cU†c

a
(Si)a

b
Ub

dχd = Rij χ̄
a(Sj)a

b
χb

(37)

It is not necessary to introduce the concept of representation
converters in the context of quantum mechanics (we did because
we wanted to start with objects that are familiar from undergrad-
uate education). Objects that intertwines two different kinds of
lines naturally appear in group theory: generators of group ac-
tion, Clebsch-Gordan coefficients, converters between two rep-
resentations (e.g., differential operators and SO(3) rotation or
spin-3/2 and spin-1/2 representations of SU(2)), etc. Further-
more, it is also possible to consider objects entailed with multiple

types and numbers of indices, such as , , or .

In group theory, there exists a systematic procedure of ob-
taining tensorial identities.3 We choose not to reproduce it here;
most of the essentials of such procedure is already illustrated
in a heuristic manner throughout the development of this arti-
cle. It is all about imposing constraints on the group algebra
from demanding the “proper propagation of arrows.” For ex-
ample, the invariance of δij under infinitesimal rotations imply
that the rotation generators are antisymmetric. The invariance
of generators themselves (cf. Eq. (37)) boils down to the commu-
tation relation studied in P53b, where εijk being the structure
constant of the so(3) algebra. The invariance of the structure
constant then implies the Jacobi identity (cf. Eq. (64)). One
thing that needs an extra care is the analog of = − for
a general Lie group. In case of the group SO(3), the invariant
symbol εijk, the rotation generators, and the structure constant
all coincide. However, this is not true for general Lie groups so
that the analog of = − can be not unique.

P71 [?] In this section, we are broadening our horizons to mul-
tiple types of lines. To illustrate the “proper propagation
of arrowheads” condition for invariant symbols, consider a
hypothetical algebra that has three types of lines: black,
red, and blue. Suppose there exists an invariant symbol
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entailed with all the types of lines: σµ
aḃ

=
µ

a ḃ
. The

condition for this object to be invariant under infinitesimal
transformations is the following (infinitesimal version of)
“propagation of arrowheads.”

S = + (38)

Suppose that the basic grammar of this algebraic system
is given by the following.

= , = = 0 , = = d . (39)

Find the expression for the generator for red lines, ,

provided that S is known. [Answer : 1
d S

.]

P72 [ ! ] The idea of collective indices is to regard a bunch
of indices as one group. Consider a grouping I ↔ [ij].
Then, an antisymmetric tensor Tij = T[ij] is written
“TI” in the collective index notation. We can regard i
and I as “different types of lines” and investigate the
correspondence between the i-world and the I-world. It is
instructive because one can derive the algebra of I-tensors
from the lower level syntax, the algebra of i-tensors. In
the graphical notation, the converter between the two
worlds is drawn as the following.

(MI)ij =

−2
i

I

j

(40)

Do you see the antisymmetrizer inside the “sheath?” If
we peel off the sheath, that is, when I ↔ [mn],

(MI)ij ↔
−2

i

mn

j

= −2δi[mδn]j . (41)

In this problem, i, j, · · · are SO(3)-vector indices as usual.

(a) Prove the commutation relation (MI)ik(MJ)kj −
(MJ)ik(MI)kj = fKIJ(MK)ij , where fKIJ =
−2(δk[mδn][rδs]l − δl[mδn][rδs]k) when I ↔ [mn], J ↔
[rs], and K ↔ [kl].

- =

−2 −2 −2 −2 −2

−4 (42)

(b) The I-version of Kronecker delta is the antisymmetric
projector; δIJ ↔ δm[rδs]n when I ↔ [mn] and J ↔
[rs]. In the graphical notation, δIJ = I J. This
satisfies δIJδJK = δIK . What is the I-version of εijk
then? The requirement is that δIJ and εIJK have the
same syntax with δij and εijk. (After constructing
δIJ and εIJK and establishing their syntax that is
derivable from the lower level structures (the i-world),
we can solely work on the I-world when dealing with
I-world identities, not referring to the “microscopic
implementations.”) [Answer : i εIJK := ±1√

2
fIJK .]

(c) We stacked two i-lines and then made the I-world
that reproduces the syntax of its mother. We can
repeat this procedure to build, say, the I-world,
where I ↔ [IJ ], that has the same syntax with the
I-world so with the i-world.

(43)

Furthermore, we can repeat this again and again and
construct an infinite tower—fractals! On the other
hand, can we step down? An interesting observation
by Penrose17 is that it is possible. What he calls
“binors” have the following property.

= d , + + = 0 . (44)

The relation between binors and the i-world par-
allels that of the i-world and the I-world. That
is, when i ↔ [ab] and j ↔ [cd], δij = i j ↔
δa[cδd]b = a

b d
c . Show that ↔ ±

√
2

reproduces = − . In addition, find the

value of d that reproduces = −2 , i.e.,

(±
√

2)2 = −2 . [Answer : d = −2.]

These diagrams for collective indices
reminds the author of this picture of
a collision between two dipolar vort-
ices.18 Two vortices interact by int-
erchanging half of their body with
each other; a big particle comprised
of two smaller elements interact with
another one by interchanging one of
their constituents. It is analogous to
the case of binors where two spin-1/2
“particles” made a spin-1 “particle.”
When the “small” particles are appro-
priately grouped, the syntax of the
small world reproduces the syntax of the big world. How-
ever, the “big syntax” does not necessarily tell everything
about the “small syntax.” The vortices may not remain in
a dipolar shape after collision in some circumstances, for
example; there are binor identities that do not correspond
to any i-world expressions. The flow from the small to the
big world is one-sided; information is lost. This implies a
possibility of multiple small worlds corresponding to the
big world; a number of “small syntax” can implement a
“universal syntax.” Repeating the grouping procedure,
microscopic details will be completely washed out so that
a fixed point will be achieved; recall the “self-similarity”
of SO(3)-tensors under antisymmetric grouping. The
“renormalization group flow” flows from binors to the
i-world which is the fixed point.

3. Connection to Feynman Diagrams

We just have opened up new possibilities to our toy box: ver-
tices that intertwine different kinds of lines. Now, one may be
curious about what is going on in Feynman diagrams, where var-
ious kinds of lines standing for different kinds of particles appear:
straight, wiggly, squiggly, dotted, · · · . Regarding the structural
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aspects only, Feynman diagrams are just special categories of the
graphical equations we have been discussing.

Let us consider Feynman diagrams in continuum quantum
field theory as an example. Field theory studies about physical
quantities distributed on spacetime, such as electromagnetic po-

tential (V (t, ~x), ~A(t, ~x)) or displacement field of vibrating atoms

in a solid lattice, ~ξ(t, ~x). Typically, field variables take values
at an infinite or large number (i.e., an order of Avogadro num-
ber) of places—electromagnetic fields take values at every point
in spacetime, and the displacement field takes values at each
site on the lattice. In this sense, field theory is a study of in-
finite or large degrees of freedom. It is typical to approximate

discrete fields such as ~ξ(t, ~x) as continuum fields. For instance,

for ~ξ(t, ~x), this is done by regarding the atomic spacing to be
small. Quantum field theory studies quantum fluctuations of
fields. Let φ(t, ~x) be an anonymous field (the letter “φ” for de-
grees of “freedom”). When ~ is turned on, the value of φ(t, ~x)
gets uncertain as a particle’s position variables do in quantum

mechanics; that is, it becomes an operator, φ̂(t, ~x). The result

is various operator fields: φ̂2(t, ~x), φ̂3(t, ~x), and so on (cf. x̂2,
x̂3, · · · in quantum mechanics).19 Generally, φ and its conjugate
momentum π together comprise all kinds of fields in a theory.

Think of some local operator Ô(t, ~x). When the Hamilto-

nian Ĥ of the system is given, operators evolve through time
according to the time evolution law in the Heisenberg picture:
Ô(t, ~x) = Û−1(t← t0) Ô(t0, ~x) Û(t← t0) with Û(t← t0) being

the time-evolution operator exp
(

1
i~ (t− t0) Ĥ

)
. Let us first con-

sider operators at a certain equal-time slice, thus suppressing
the time label. How can Ô(~x) be represented graphically? It
is achieved by simply replacing the discrete index i in the for-

mer
A

i

of Section I D 2 into a continuous index ~x:
�x

�pO�q

:= O~q~p(~x). The continuous indices ~p, ~q, · · · label H-lines. (A
“state” in a quantum field theory corresponds to a probability
profile of field configurations at a certain time slice, so the state
space H is infinite-dimensional.) Here, instead of being denoted
by using the hat symbol, an operator is seen as a tensor that has
one input H-line and one output H-line: it takes a state in the
Hilbert space and returns another state!

Now, successive application of such operators would be de-
noted as the following.

O2
~q
~k(~y)O1

~k
~p(~x) =

�y

�q

�x

�p

�k
O2 O1 (45)

~k is a dummy index. The designer now pursues minimalism
and suggests us to put boxes at position ~x rather than writing
“~x ” at its side—abolishing the abstraction inherent in the gap
between letters and its meaning and returning to the primitive,
“hieroglyphic” level.

O2
~q
~k(~y)O1

~k
~p(~x) =

�q �k
O2 O1

�p

�y
�x

(46)

The position vectors ~x and ~y (indicated by mint arrows) are
three-dimensional; we regret that we could not use a 3D printer
to print the diagram Eq. (46) in three dimensions. Instead of
that, we expressed the spatial position as horizontal displace-
ment. We drew small arrows alongside the grey lines to clarify
the operator ordering, as the placement of operators now de-
pends on the position labels rather than the operator ordering

so that the “right-to-left hierarchy” reading rule cannot be ap-
plied anymore.

Eq. (46) is in fact an equal-time Feynman diagram! Indices

~p, ~k, ~q are momentum labels, indicating momentum flows. Now,
let us move on to operator fields at different times. A diagram
corresponding to an expression O2

~q
~k(t2, ~y)O1

~k
~p(t1, ~x), for t2 >

t1, would be the following.

�q
�kO2

O1
�p

�y

�x

t2

t1
(47)

As conventional space-time diagrams do, the flow of time is de-
picted as vertical direction, while the spatial dimension is de-
picted horizontally. This diagram shows a particle moving in
spacetime. Recall that the total space of invariants was spanned
by rank-0, 1, 2, · · · tensors in the case of finite-dimensional ten-
sors. Analogously, the whole possibilities of quantum fluctua-
tions come in zero-particle state, one-particle states, two-particle
states, and so on: diagrams with 0, 1, 2, · · · lines.

Finally, if another type of Hilbert spaceH′ (labelled by primed
indices ~p ′, ~q ′, · · · ) participates in this game, a different kind of
grey line comes into play. For example, there can be an operator,
say, A~p

′~q
~p(t, ~x), that intertwines twoH indices and oneH′ index:

�x

�q

�p
A

�p′

t . (48)

Then, we can assemble such operators to build diagrams such as

�k

�l �p′

A
A

�y

�x

t2
t1

�q

�p
, (49)

which denotes A~p ′
~l
~k(t2, ~y)A~p

′~q
~p(t1, ~x): two “ ” particles are

scattered via exchanging a “ ” particle. Different types of
Hilbert spaces means different kinds of particles. A~p

′~q
~p(t, ~x),

dressed with various types of indices, functions as a converter
between Hilbert spaces: an interaction vertex between particles.
The lines are particles: objects, nouns. The vertices are inter-
actions: morphisms, verbs. Eq. (49) is a typical diagram you
would meet in quantum electrodynamics, up to extra structures
including polarization and spinor information.

The significance of Feynman diagrams in physics is perhaps
that it explicates the particle interpretation. The deduction
of Feynman diagrams above may be vague in the standards of
physics. For example, are those grey lines really particles, while
they come from the graphical representation of operator fields
Ô1(t, ~x), Ô2(t, ~x), · · · that are arbitrary? This is because the
discussion was somewhat formal. A typical explanation is op-
posite to discussions here: one arrives at birdtracks from Feyn-
man diagrams by leaving only the group-theoretical part. To
make the physical content clearer, it is recommended to start
with concrete physical examples, e.g., analyzing the grammar
of a Feynman diagram in quantum mechanics. Studying how
Feynman diagrams arise in the Hamiltonian framework of quan-
tum field theory is also helpful. Further, Lagrangian (functional)
formalism20 helps to comprehend the “input and output” nature
of Feynman diagram elements. The worldline formalism will also
provide insights by directly associating the lines in Feynman di-
agrams with first-quantized Hilbert space. Depending on the
formalism, the specific interpretation of Feynman diagrams may
appear a little differently. For example, the diagram Eq. (47) can
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be seen as depicting a path integration with operator insertions
Ô1(t, ~x) and Ô2(t, ~x) presented in a form of “gluing formula,”
rather than a particle process; Eq. (50) schematically shows this
idea, where red shade represents path integration and the bumps
at the ends depict the boundary conditions of the path integral.

O2

O1

α

β

O2

O1

α

β

O2

O1

α

β

~ ~ ~ O2

O1

α

β

(50)

Starting from diagrams of finite-dimensional tensors, our
graphical calculus has undergone a rapid expansion in the past
two sections: the addition of infinite-dimensional lines and in-
tertwiners carrying multiple kinds of lines. What is next? Fol-
lowing purely graphical reasoning, one can think of braided dia-
grams (where there exists a notion of “passing over” and “pass-
ing under” when two lines meet), ribbon diagrams (lines become
stiff ribbons so that they can be twisted), “straw” diagrams (a
cross-section of lines become a loop rather than a point), two-
categories (faces also comes into play in addition to vertices and
lines), and so on. In fact, the first three appear when considering
anyons, non-commutative field theory, and string theory. How-
ever, in general, whether such extended diagrammatic systems
have connections with actual physics is not certain. Some exotic
diagrammatic systems may fail to find physical significance yet
remaining as a mathematical possibility. Whether an extended
diagrammatic syntax can be derivable from some Lagrangian is
also not certain, yet a “radical” scenario is to build a quantum
field theory without reference to Lagrangian by taking the “dia-
grammar” as its definition. Nonetheless, there are always rooms
for extended objects.

One interesting extended graphical element that comes from
standard quantum field theory is the topological surface opera-
tor. Let us demonstrate it briefly in the case of Lorentz-covariant
scalar field theory. Classically, energy-momentum is locally con-
served: ∂µT

µν [φ](x) = 0, where Tµν [φ](x) is the stress-energy
tensor for a field φ(x). This leads to a global conservation:
−
∫
d3xT 0ν [φ](x0, ~x) is a conserved quantity (remains the same

as x0 changes). In fact, P ν [φ](S) := −
∫
S d

3Σµ T
µν [φ](x) for

an arbitrary exact hypersurface S equals to zero. Now, the
quantum version of the local conservation of energy-momentum
is the Ward identity22 ∂

∂xµ 〈Tµν(x)O1(x1) · · · On(xn)〉 =∑n
j=1−δ(4)(x− xn) ∂

∂xjν
〈O1(x1) · · · On(xn)〉, where the symbol

〈 〉 stands for averaging over all quantum fluctuations. Then,
it turns out that 〈P ν(∂W)O(x)〉 = ∂ν〈O(x)〉 holds for any vol-
ume W that contains x. (When multiple operators are inserted,
the differentiation only applies for operators put inside W.) To
“draw” this identity, we have the following.

= ∂ν
( )

(51)

Wait, this is the “differentiation balloon!” (If you feel the tail
“ ” somewhat artificial, we could have drawn the picture more
“descriptively”:

=

( )
−
( )

. (52)

The “hairs” on the surface are the Killing vector field ξµ∂µ =
δµν ∂µ. If we were considering rotations ξµ∂µ = −2(x[αδ

µ
β])∂µ,

the hairs would spiral around the origin. We believe that the
abstraction of the hairs into “ ” is acceptable enough.) We
just “physically implemented” or “materialized”23 the differen-
tiation balloon notation by a topological surface operator. Such
an inversion is intriguing. A Feynman diagram notates an S-
matrix that corresponds to a scattering scenario. At the same
time, scattering of particles itself also “notates” the Feynman
diagram; it implements the choreography (computes the dia-
gram). Drawing hands.24 Mathematical structures “represent”
the physical reality and vice versa. Physical reality, or materials,
also serves as a notation. Among various notations, notations
that are in the primitive, “hieroglyphic” level may be likely to
descriptively display the physical reality—if we assume that the
physical reality is written in geometric terms. Or, to be more
conservative, graphical notations provide a way to give a phys-
ical interpretation of mathematical structures of a theory (the
“notational realism”). Think of the way how Feynman diagrams
give an answer to a question such as “What is a photon?”

A final comment: having acquainted
with group theory before meeting
Feynman diagrams, we can ask a ques-
tion: can we continue the habits from
group theory to quantum field theory?
Can we make a parallel between the
two? Can we study the interactions
of particles by applying the systematic
procedure of demanding “proper prop-

Edward Tufte, Torqued
Space-Time Feynman diag-,
ram, 2012. Stainless steel.

agation of arrows?” It seems that modern amplitude tech-
niques implement this idea. In the story of color-kinematics
duality,38,39 it turns out that the kinematic factors of a Feynman
diagram satisfy a relation analogous to the Jacobi identity.
Moreover, this can be explicated by carrying out the idea of
“S-matrices as momentum-index tensors” as a diffeomorphism
Lie algebra for self-dual Yang-Mills theory.40–43 In the spinor-
helicity formalism,37 scattering amplitudes are investigated
from symmetry principles. Imagine if you can touch a Feynman
diagram (should be felt like a steel wire or something else).
Grab one of its arms and twist it one direction as if you are
twiddling a knob. Then, the amplitude somehow “reacts” to
this transformation (called the little group action). Doing a
kind of dimensional analysis on the little group weight of each
arm, you can deduce the form of the scattering amplitude! It
would be interesting to see how these approaches will change
our understandings on quantum field theory.

Bonus Cuts

Artwork Inspired by Graphical Notations

Joon-Hwi Kim, A Pleasant Dream II, 2016.
Digital printing on canvas.
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II. Solutions

A. Graphical Vector Algebra

A1 (a)
A

B C
. Depending on grouping the three boxes, you

can read off this diagram various ways, such as ~B·(~C×
~A) and ~C · ( ~A × ~B). Reading in clockwise direction

gives − ~A×(~C× ~B), − ~B×( ~A× ~C), and −~C×( ~B× ~A).

(b)
A

C

B
. Reading the two cross product machines

anti-clockwise or clockwise, this can be read off by
~A × ( ~B × ~C), −( ~B × ~C) × ~A, − ~A × (~C × ~B), and

(~C × ~B)× ~A.

(c)
A

D C

B
. Different groupings give different readings.

~A and ~D versus ~B and ~C gives ( ~D × ~A) · ( ~B × ~C). ~A

versus the others gives ~A·
(
( ~B× ~C)× ~D

)
. ~B versus the

others, ~C versus the others, and ~D versus the others
are also possible. In addition, reading the cross prod-
uct machines anti-clockwise or clockwise gives further
disguises of an identical expression.

A2 (a)
j

A C

B

; εjlkAk(−εlmnCmBn).

(b)
A

B i
; AlBkεlki.

(c)
B

A

C

l

; Bi(−εijk(εjlmCm)Ak).

(d)
A B

; (−εijlAl)(−εjkmBm)δki.

(e) A
B

C
;

AiεimnεjnmεjklCkBl, εijkCiBj(εklmεmlnAn), etc.

A3 (a) A Bi j = AiBj .

(b) AkBkδij , labelling the two ends of the Kronecker delta
i and j, respectively.

(c) AiBjCkεijk or ~A · ( ~B × ~C), etc.

(d) AiBlεijkεljk, etc.

(e) i. AjBkCmDnEoεijkεiolεlmn, or [(( ~A × ~B) × ~E) ×
~C] · ~D, ~E ·

(
(~C × ~D)× ( ~A× ~B)

)
, etc.

ii. AjCmDnEoεijkεiolεlmn, labelling the end of the

diagram by k. Or, ( ~E × (~C × ~D))× ~A, etc.
iii. AjBkCmDnεijkεiolεlmn, labelling the end of the

diagram by o. Or, (~C × ~D)× ( ~A× ~B), etc.

(f) δijδij , δii, etc.

(g) εijkδjk, labelling the end of the diagram by i.

(h) εijk(−εijk), etc.

(i) εijkεjki, etc.

A4 Different groupings of a diagram
A

B

D

C
,

A

B

D

C
and

A

B

D

C
, gives ( ~A × ~B) · (~C × ~D) and ~A · ( ~B × (~C × ~D)),

respectively.

A5 (a)
A B C D

=
D C A B

.

(b)
A B

= − A B .

(c)
A

B C
=

C

A B
.

A6 (a) ~A× ( ~B × ~C) + ~B × (~C × ~A) + ~C × ( ~A× ~B) = 0 .

(b) εimjAmεjnkBn = AkBi − δikAlBl .
A7 In the graphical notation, do the “clank” procedure. In

the plaintext notation, rearrange terms, relabel dummy in-
dices, and then permute two indices of the epsilon tensor.

A A
=

A A
= −

A A
= 0

εijkAjAk =
εijkAkAj

=

εikjAjAk
= −εijkAjAk = 0

(53)

A8 Use − = − and ~n · ~n = 1.

−
n n

=

n n

−
n n

= − n n

−εilknlεkmjnm = δijδlmnlnm − δimδljnlnm

= δij − ninj

(54)

A9 As = − n n , = − 2 n n +
n n n n = − n n = ; is idempo-

tent.

A10 From the given “bones” = − , we find Eqs. (55)
and (56).

AB

C D
=

AB

C D
−

AB

C D

l
( ~A× ~B)·(~C× ~D) = ~A· ~C ~B · ~D − ~A· ~D ~B · ~C

(55)

A

B C
=

A

B C
−

A

B C

l
~A×( ~B× ~C) = ~B( ~A· ~C) − ~C( ~A· ~B)

(56)

Eq. (55) is a scalar equation, while Eq. (56) is a vector
equation. We can “peel off” to obtain identities of two,
three, and four free terminals. The resulting four-terminal
equation is just = − . The three-terminal equation

is what we get when a single ~A at one of the terminals of
= − is attached, which is not that interesting. In

case of two-terminal equations, there are two possibilities.

A B

= B A − A B (57)

A B
= B A −

A B
(58)

The former relates antisymmetrization with epsilon
tensors. The later describes matrix product of Hodge dual
of two vectors.



14

A11 (a) Extract the “bones” of the Jacobi identity. Then,
what we have to prove is that

+ + (59)

is equal to zero. Following the instruction given in
the problem, we find

− + − + − (60)

= − + − + − (61)

= 0 . (62)

(b) We can obtain zero, one, two, and three-terminal
identities by attaching the “flesh pieces.” The
one-terminal identity is P6a itself, that is,
~A× ( ~B × ~C) + ~B × (~C × ~A) + ~C × ( ~A× ~B) = 0. Con-

tracting this with a vector ~D gives the zero-terminal

identity: ~A ·
(

( ~B × ~C)× ~D
)

+ ~B ·
(

(~C × ~A)× ~D
)

+

~C ·
(

( ~A× ~B)× ~D
)

= 0. In case of two-terminal

identity, it is written graphically as

A B
−

A B
=

A B
. (63)

You will later meet this identity again: this is the
commutation relation of the so(3) algebra. The
three-terminal identity reads as follows.

A
+

A

+ A = 0 (64)

This will be interpreted as the invariance of εijk with
respect to infinitesimal rotation.

A12 (a) = − = −2 (this identity is in fact men-

tioned in the main article). Note that self-contracting
a cross product machine gives a trivial identity, 0 = 0.

(b) = − = 3− 32 = −6.

(c) Starting from εijkεmnk = δimδjn − δinδjm, we found
that εijkεmjk = δimδjj − δijδjm = 3δim − δim = 2δim
and εijkεijk = 2δii = 6.

A13 The original purpose of this problem is to let students ex-
ploratively find tensor identities while playing with dia-
grams; however, we approach this problem in a top-down
manner. Consider three cross product machines gathered:

. We would like to assemble these in a single connected
piece. Let the number of connecting lines between two dif-
ferent cores to be a, b, and c, respectively. Surely, any of
a+ b, b+ c, and c+a should not exceed three, because one
cross product machine only has three arms. Without loss of
generality, let a ≥ b ≥ c. Then, the possible combinations
are (a, b, c) = (3, 0, 0), (2, 1, 1), (2, 1, 0), (2, 0, 0), (1, 1, 0),

(1, 0, 0), and (0, 0, 0): , , , · · · . (There can be
also self-connections other than mutual connections: such
as , etc. However, self-connections always give zero,

so they are not our interest.) Rule out (3, 0, 0), (1, 0, 0),
and (0, 0, 0), because they are disconnected. Rule out also

(2, 1, 1), because it is equal to zero. Now, the remaining

ones are , , and .

A14 and are one-loop diagrams; is a tree-level dia-
gram.

A15 Tree-level diagrams cannot be a 1PI diagram. Also, it
can be easily checked that all epsilon networks that have
self-connections are not 1PI diagrams. Therefore, among
the connected nonzero diagrams we have obtained in P13,
we only have as a 1PI diagram. On the other hand,

(2, 1, 1), , which vanishes (equals zero) so that we have

excluded in P13, is also a 1PI diagram. Thus, the answer

is and . The first one reduces into − as

= − = − . The later reduces into 0 , as it is

equal to − = 0− 0.

A16 − = − = .

A17 From = − = − , we obtain

− + − + = 0. As we have practiced in

Section I A 2, we can obtain zero to five terminal identities
by attaching the “flesh pieces.” The most convenient to
denote in the plaintext notation is zero and one-terminal
identities. The one-terminal identity reads as follows.

D
C B

A
=

D
C B

A
−

D
C B

A
+

D
C B

A
(65)

This is translated to the plaintext notation as

( ~A · ~B× ~C) ~D = ~A( ~B · ~C× ~D)− ~B( ~A · ~C× ~D)+ ~C( ~A · ~B× ~D).

Contracting this with another vector ~E, we obtain

also a zero-terminal identity: ( ~D · ~E)( ~A · ~B × ~C) =

( ~A · ~E)( ~B · ~C× ~D)− ( ~B · ~E)( ~A · ~C× ~D) + (~C · ~E)( ~A · ~B× ~D).

A18 Using diagrams,

− = 3!
1

3

[
− −

]
(66)

= 3!
1

3

[
3 − −

]
(67)

= 2! = − . (68)

In the plaintext notation, εkmnε
kij = 3!δk[kδ

i
mδ

j
n] =

3! 13 (δkkδ
i
[mδ

j
n] + δkmδ

i
[nδ

j
k] + δknδ

i
[kδ

j
m]) = 3!13 (3δi[mδ

j
n] +

δi[nδ
j
m] + δi[nδ

j
m]) = 2!δi[mδ

j
n] = δimδ

j
n − δinδjm. (Or, it can be

worked out by expanding all the antisymmetrizers.) It is
often quick to use the graphical notation, especially when
we have to permute many indices.

A19 By the basic property of antisymmetrizers, =

1
4

[
− + −

]
. The left hand side is zero.

Adjoining three upper-right arms by the cross product ma-

chine gives = 1
4

[
− + −

]
.

The left hand side is zero as mentioned. Also, note
that the cross product machine is already totally an-



15

tisymmetric so that antisymmetrization of its three in-
dices has no effect on it: = . This leads to

− + − = 0 , which is identical to the

“bone” identity in A17.

A20 + = , but + = 1
3

(
+ +

)
6= . Instead,

= + 4
3 + 4

3 + ; you may want to check it. This
is the identity for irreducibly decomposing rank-3 tensors.

A21 Based on the presented argument, we only need to fix
the proportionality constant c, where = c . To find

the value of c, contract all indices as = c .

Then, we have −6 at the left hand side and c/3! times the
following at the right hand side.

+ + − − − (69)

= 33 + 3 + 3− 32 − 32 − 32 = 6 (70)

Thus, −6 = (c/3!)× 6 = c.

A22 From rotational invariance and permutation symmetry,
The two-terminal expression must be proportional to

, so let = c . Connecting the two terminals
yields = c ; −6 = 3c; c = −2.

A23 First, we should identify what permutation symmetry
has. Swapping two of its indices, we find

= − = −(−)2 = (−)3 . (71)

To flip the whole diagram , we need to flip three cross
product machines individually; thus the (−)3 factor.
Considering its cyclic symmetry, we conclude that is
totally antisymmetric in its three indices. Therefore, it
must be proportional to the “unit” totally antisymmetric
rank-3 tensor:

:= c . (72)

Attaching another cross-product machine gives

= c = −6c . (73)

Provided that = 6, we can prove that c = −1. (Note:
the value of is equal to the number of ways to color
the edges of the graph with three colors so that distinct
colors meet at each vertex.17 To see why, call the three
colors “x,” “y,” and “z” and remind that there lies εijk at
each vertex with εxyz = 1.)

A24 Tadpole diagrams are diagrams such as , , etc. Note

that at the tail of tadpole diagrams there always sits a
cross product machine.

Consider a tadpole diagram. It can be split into one cross
product machine that carries its tail and the rest of it,
which has two free terminals so that is proportional to
Kronecker delta by Schur’s lemma. Thus, any tadpole di-
agram is proportional to , which is zero: any tadpole

diagram vanishes.

This is a consequence of rotational symmetry. An epsilon
network must be rotationally invariant because it is com-
posed of cross product machines, which are rotationally in-
variant. (“Rotationally invariant” means that the “arrow-
heads” propagate properly along the network; refer to Sec-
tion I C 3.) However, there are no (nonzero) rotationally
invariant tensors that have one terminal: if it existed, it
means that it discriminates a particular direction in space.
Thus, no nonzero tadpole epsilon networks can exist.

B. Graphical Vector Calculus

A25 (a)
f A = f A + f A

l
∇ · (f ~A) = ∇f · ~A + f ∇· ~A

(74)

(b)

f A
=

f A
+

f A

l
∇ × ( f ~A ) = ∇f × ~A + f ∇× ~A

(75)

A26 A

B

=

A

B

−
A

B

l
∂Aj
∂xi

∂Bm
∂xl

εijkεlmk =
∂Aj
∂xi

∂Bj
∂xi

− ∂Aj
∂xi

∂Bi
∂xj

(76)

A27 (a) A

BC

= A

BC

+ A

BC

+ A

BC

.

(b) Using the = − trick,

A
B

C

=
A

B

C

− A
B

C

(77)

=
A

B

C

+
A

B

C

. (78)

A28 n = r1
r = 1

r − 1
r2

rn = 1
r .

~n at a position ~r does not change when ~r makes a radial
displacement. When ~r is infinitesimally varied along a tan-
gential direction, i.e., the infinitesimal displacement d~r is
perpendicular to ~r, ~n rotates by an angle 1

r |d~r | so that it

changes by d~n = 1
rd~r. Therefore, dni = 1

rPij dxj , where
Pij , the ~n-projector δij − ninj , ensures that ~n only react
to tangential displacement.
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A29 n

r2
= 4πδ(3)(~r) .

A30 (a) As mentioned in the main article, = 0 holds as

an operator identity. Feeding a scalar field f(~r) and

a vector field ~A(~r) gives

f
= 0 and A = 0 , (79)

respectively. The former proves the first identity
of the problem. The latter is rarely mentioned in
the literature, but if we connect the two ends with

Kronecker delta, we have 0 = A = A ,

which translates into the plaintext notation as

∇ · (∇ × ~A) = 0. Note that if we use a cross
product machine instead of Kronecker delta, we find

that
A

= 0 , which translates into ∇(∇ · ~A)−

∂i∇(Ai) = 0.

(b)
A

=
A − A

=
A − A .

A31 (a) f g = f g + f g

= f g + 2 f g + f g .

(b) f A = f A + f A

= f A + 2 f A + f A .

(c) ∇2( ~A · ~B) = A B = A B + A B .

One can proceed in the same way as the former
problems to get

A B +2 A B + A B . (80)

In addition, let us try to obtain an expression that is
also tractable in the index-free plaintext notation.

From

A B = A B − A B , (81)

∇2( ~A · ~B) = A B − A B + 2 A B . The

last term can be written differently employing the
= − trick.

A B = A B − A B (82)

To sum up, ∇2( ~A · ~B) is equal to ~A · ∇2 ~B − ~B · ∇2 ~A
plus the double of Eq. (82) which, as a total, result in
~A·∇2 ~B − ~B·∇2 ~A+2∇·

(
( ~B · ∇) ~A − ~B × (−∇× ~A)

)
.

This proves the equation given by the problem.

A32 Recall that r = and r = n . Also,

r vanishes, and n = 1
r

(
− n n

)

:= 1
r

( )
.

(a) r = n = 1
r = 1

r (3− 1) = 2
r .

The fact that the trace of is equal to 2 reflects
its dimensionality: it projects vectors to a two-
dimensional subspace.

For ∇2~n, write n = r1
r and then apply

the Leibniz rule:

= 2 1
r

r + 1
r

r (83)

= − 2
r2

n −(((((
(((4πδ(3)(~r) r . (84)

Thus, −r2∇2~n = 2~n . This “2” originates from
`(`+ 1), ` = 1.

(b) ∇2z = ∇2(~ez · ~r), and ~ez, a constant vector, can per-
meate through the differentiation loop. Therefore,

since ∇2~r = 0, ∇2z = 0 .

rez =

ez

r = 0 (85)

(c) Use the same strategy with the previous problem.
First, consider

rr . (86)

Contracting the two terminals of this expression with

gives ∇2(r2). How about using ex ey ? This

gives ∇2(xy).
(

ex ex − ey ey
)

gives ∇2(x2− y2).

Lastly,
(

3 ez ez −
)

gives ∇2(3z2 − r2). Hence,

calculating Eq. (86) will provide all answers for
this question. It proceeds by applying the Leibniz
rule. Since ∇2~r = 0, the only surviving term is the
cross terms (i.e., “one differentiation per one ~r ”),

2 r r , which is equal to 2 .
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Thus, ∇2(r2) = 2 = 6 . (This “6” originates from

`(`+ 1), ` = 2.) For the cases of contracting Eq. (86)

with ex ey ,
(

ex ex − ey ey
)

, and
(

3 ez ez −
)

,

you can easily check that they are zero! Therefore,

∇2(3z2 − r2),∇2(x2 − y2),∇2(xy) = 0 .

(d) In the same way, we are interested in

rr r , (87)

which is equal to

2 r r r + 2 r r r + 2 r r r

= 6
(
average of all permutations of

r

)

= 6
r
. (88)

Then, we can obtain ∇2
(
z(5z2 − 3r2)

)
, ∇2

(
x(5z2

−r2)
)
, etc. by plugging in appropriate combination

of basis vectors.

∇2
(
z(5z2 − 3r2)

)
(89)

= 6

(
5
ez ez ez

r
− 3

ez

r

)
(90)

= 6

(
5
ez ez ez

r
−

ez

r
− 2

ez

r

)
(91)

= 6
(
5z − 3z − 2z) = 0 (92)

Untying symmetrizers into all possible permutations
gives transition from Eq. (90) to Eq. (91). Note that
ez ez ez = ez ez ez . Similarly,

∇2
(
x(5z2 − r2)

)
(93)

= 6

(
5
ex ez ez

r
−

ex

r

)
(94)

= 2

(
5
ez ez ex

r
−

ex

r
− 2

ex

r

)
(95)

= 2(5x− 3x− 2x) = 0 . (96)

In fact, you can check that ∇2
(
z(x2 − y2)

)
and

∇2
(
x(x2 − 3y2)

)
are also zero. Thus, the answers to

this problem is 0 .

A33 Letting ~u = ∇Φ,

uu
=

ΦΦ
(97)

=
ΦΦ

=
1

2 ΦΦ
. (98)

A34 The proof proceeds in two steps. First,

u

u

=
u

u

− u

u

(99)

=
1

2 u2
− u

ω

, (100)

where ~ω := ∇× ~u. Then,

−
u ω

=
u ω

−
u ω

(101)

=
u ω

+
u ω

−
u ω

−
u ω

. (102)

A35 · · · = · · · .

A36 Provided that ψ = −k2 ψ , the proof proceeds as the

following.

r ψ = ψr + 2 r ψ + r ψ

(103)

= 0 + 2 ψ + r ψ = −k2 r ψ (104)

C. Graphical Tensor Calculus

A37 When the two arms of the shaded expression in the mid-

dle of Eq. (19) is swapped as I → I then yanked, it

rotates by 180°. As the resulting expression is identical to
the expression before swap-then-yanking, the inertia ten-
sor is symmetric. Or, one can expand the expression by

= − then apply the swap-then-yanking.

A38

∫
dm

1

2

(
3
r

r
− r2

)
.

A39 The trace of the inertia tensor reads:

∫
dm r

r =
∫
dm 2r2 (refer to P55a). For the case of mass quadrupole

moment, it is traceless:

∫
dm

1

2

(
3

r

r
− r2

)
=

∫
dm

1

2

(
3 r2 − 3 r2

)
= 0.
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A40
1

2

(
3
r

r
− r2

)
=

1

2

(
3
r

r
−3 r2

)
+

1

2

(
2 r2

)
. The first

term is equal to − 3
2
r

r and give − 3
2Iij when integrated

by
∫
dm. The second term translates into r2δij , and gives

1
2δijIkk when integrated, as

∫
dm 2r2 = Iii shown in the

previous problem.

A41 It surely is an “enormous” tensorial expression, but can
be wisely reduced further using the graphical notation.
First, observe that we can write the bracketed term in

Eq. (20) as
n n

n

Q

. This is easily verified by = −

and the fact that ~n is a unit vector. Then, ~S is equal to
(µ0ω

6/288π2c4)r−2 times the real part of

Q n
nn

n

n

Q∗
= n

n n

n

Q∗ Q

n

I IIIII
. (105)

(Or, if you want, using the plaintext notation, Si =
(µ0ω

6/288π2c4)r−2 εijlεjhkεkabεldenhnancndnf ReQ∗bcQef .)
Here, the asterisk in Q means that it is complex conju-
gated. One may wonder why we rewrote the bracketed
term in Eq. (20) involving two cross products, increasing
the net number of cross product machines. In fact, it
turns out that it was a wise prescription that effectively
reduces the required steps. We have three options for
applying the “ = − ” identity; among options I,
II, and III marked in Eq. (105), what “knot” is the best to
cut off first? It is the option III, because the “ ” term
vanishes by ~n× ~n = 0.

nn

See the two ~n’s that are plugged into a cross product ma-
chine? Thus, only the “ ” term survives, and we obtain

−
n

n n

n

Q∗ Q

n

= −
n

n
Q∗

n

n

n

Q
. (106)

(One may further expand the here.) Therefore, the
answer is

(µ0ω
6/288π2c4)r−2 times the real part of Eq. (106).

A42 It is not necessary to write equations in a completely graph-
ical manner. However, if some want to do so, they can
denote ∂/∂t as a balloon, of which shape is distinguished
from that of spatial derivative ∇, such as .

(a) Start with the equations that do not couple with

sources. Substituting
−→
D =

−→
εE and

−→
B =

−→
µH,25

∇ · µ−→H = 0 ↔ Hµ = 0
, (107)

∂
∂tµ
−→
H +∇×−→E = 0

l

Hµ +
E

= 0 .

(108)

Then, consider the remaining two. Letting ρfree = 0

and
−→
J free = 0,

∇ · ε−→E = 0 ↔ Eε = 0,
(109)

− ∂
∂t ε
−→
E +∇×−→H = 0

l

− Eε +
H

= 0 .

(110)

(b) For a plane wave solution
−→
E =

−→
E0 e

−iωt+i−→k ·−→x and
−→
H =

−→
H0 e

−iωt+i−→k ·−→x , Eqs. (107) and (109) reads

k E0ε = 0 and k H0µ = 0 , (111)

respectively. Next, Eqs. (108) and (110) reads as
follows, respectively.

− H0µ iω
= E0

ki

, (112)

E0ε iω
= H0

ki

. (113)

It is evident that Eq. (111) comes from Eqs. (112)
and (113) by contracting with k . Therefore, one
can focus only on Eqs. (112) and (113). Using the
definitions u = 1

k k and v = ω/k, they boil
down to the following eigenvalue problems.

E0µ−1ε−1

uu

= −v2 E0 , (114)

H0ε−1µ−1

uu

= −v2 H0 . (115)

When ~E0 and ~u := ~k/k, are known, v2 can be
obtained using Eq. (114); contracting the entire
equation with E0 ,

E0µ−1ε−1E0

uu

= −v2 E0E0 . (116)

Or, for a more symmetric form, the permittivity ten-
sor can be moved to the right hand side of Eq. (114)
(by ε−1ε = ) before the contraction:



19

v2 =

µ−1
E0

uE0

u

εE0 E0

. (117)

(c) From Eq. (114),

Wij = jµ−1ε−1i

uu

. (118)

Note: if

Nij := jε−1i

u

and Mij := jµ−1i

u

, (119)

W = NM (i.e., Wij = NikMkj). W gives the

eigenvalue problem of
−→
E0:

(
W + v21

)−→
E0 = 0. On

the other hand, one can find the matrix that gives

the eigenvalue problem of
−→
H0 = MN . Provided that

N is invertible, W = NM and MN are related by
similarity transformation so that they have the same
eigenvalues.

(d) Wii,
1
2!εijkεimnWjmWkn, and 1

3!εijkεlmnWilWjmWkn

appear as coefficients in the characteristic equation.
We refer interested readers to Peterson’s article.27,28

i. tr
(
W
)

= Wii =

µ−1ε−1

uu
= u u

ε−1

µ−1
. (120)

This is simple enough; however, if you want to
write this in the index-free plaintext notation,

tr
(
ε−1 ?u µ−1 ?u

)
can be a choice (refer to

A49b for the ? notation). Or, try regarding it

as a matrix “ β ” sandwitched with two
−→
u ’s :←−

u β
−→
u . The matrix β can be massaged as

1

−2! det
(
ε
)

µ−1

ε

ε , (121)

using the expression for the inverse matrix
((ε−1)ij = 1

det(ε)
1
2!εijkεlmnεjmεkn). Untying the

in both sides by = − , we have

1

det
(
ε
)
[
εµ−1 ε− ε tr

(
µ−1 ε

)]
, (122)

which appears in Taouk’s work.8

ii.
(

adj(W )
)
il

= 1
2!εijkεlmnWjmWkn is called the

adjugate matrix of W . We want to calculate
its trace, 1

2!εijkεimnWjmWkn. In the graphical

notation,

1

−2! W

W
=

1

2

[

W

W
−

W

W
]

(123)

=
1

2

[(
W

)2 − W W

]
(124)

=
1

2

[(
tr
(
W
))2 − tr

(
W 2
)]
. (125)

Writing tr
(
W 2
)

in terms of −→u and the permittiv-
ity and permeability matrices is straightforward.

tr
(
W 2
)

=
ε−1

ε−1 µ−1
uu

µ−1

u

u

(126)

iii. det
(
W
)

= 1
3!εijkεlmnWilWjmWkn.

As W = ε−1 ?u µ−1 ?u,

det
(
W
)

=
(
det
(
?u
))2

/det
(
εµ
)
. (127)

However, det
(
?u
)

= 0, so det
(
W
)

= 0. This is

because the map
−→
V 7→ ?u

−→
V is non-invertible, as

?u−→u = −→u ×−→u = 0. Or, by explicit calculation,

u

u

u

=

u

u u

−
u

u

u

(128)

= 0− 0 = 0. (129)

A43 RikRjl = i k
j l

. Joining k and l gives = .

Joining i and j gives = . These two corre-
spond to RikRjk = δij and RjkRjl = δkl, respectively.

A44 (a) Observe that = , if you “slide” the arrowheads

upwards. Generally, attaching identical rank-2 ten-
sors and then permuting the indices gives the same
result with permuting the indices first and then at-

taching identical rank-2 tensors: e.g., = =

− . Any two indices are antisymmetric in the same

way. Thus, is totally antisymmetric so that is

equal to .

(b) By Eq. (3), = = − 1
3! . By the definition

of determinant, this is equal to .

(c) Provided that = , =

= , = = ,

and = = . The given

graphical equation demonstrates these four situa-
tions.

A45 (a) = = =−2 −2 4 .
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(b)

A A A

= = = −
A

.

(c) = = = − .

(d) = −

= − = − .

A46 = = .

A47 Provided that the integration measure is invariant, the fol-
lowing confirms that the mass quadrupole moment is a

tensor: 3
r

r
−

r

r

−→ 3
r

r
−

r

r

= 3
r

r
−

r

r

.

A48 BA → BA = BA ;

A B
→

A B
=

A B
.

A49 (a) When T → T , trT =
T
→

T
=

T
=

T
. It does not change; it is

a scalar.

(b) When T → T ,

T

→
T

=
T

(130)

(permuting indices and dressing indices with the same
matrices commute: see A44a). It dresses outward
arrowheads at each of its two indices; it is a rank-2
tensor. Since it is antisymmetric (T[ij] = −T[ji]),
it has only (32) = 3!

2!1! = 3 independent components
(number of ordered pairs (i, j) such that i < j and
i, j ∈ {1, 2, 3}): T[23], T[31], and T[12].

Meanwhile, a vector also has (31) = 3 independent
components. This suggests that an antisymmetric
rank-2 tensor can be reformatted into a vector,
preserving the contained information. This can be
achieved by employing the epsilon tensor, because
it is antisymmetric in its two indices and has three
indices so that can convert a two-index quantity
to a one-index quantity and vice versa. Use the
substitution = − 1

2 . Then, Eq. (130) reads:

−1

2
T

= −1

2
T

= −1

2
T

. (131)

Note that although the whole expression is a rank-2
tensor, the purple-shaded area transforms like a

rank-1 tensor, i.e., a vector. Therefore, an antisym-
metric rank-2 tensor, say, Aij , can be encoded in a
vector (?A)i := 1

2!εijkAjk without loss of information
so that it can be inverted as Aij = εijk(?A)k (the
normalization factors 1

2! and 1
1! are conventional).

In other words, we can always convert a bivector (a
directed area) into a vector (a directed line) by “the
right hand” (εijk or ?) and vice versa.

AA A

1

2!
=

ANTISYMMETRIC

1
2!

�
−

(132)

(c) If T = A B ,
T

= A B = A B =

~A· ~B, and 1
2!

T

= 1
2!
A B

= 1
2
~A× ~B. These are the

“invariant products” of two vectors: scalar and vec-
tor products. (Therefore, the invariant products are
in general irreducible parts of direct product of two
objects. Then, we can also think about the “sym-

metric traceless product” of two vectors, say, ~A ∩ ~B,

defined as ( ~A∩ ~B)ij := AiBj− 1
3δijAkBk. ∇∩~u(~r) will

be related to the “shear”29 of a vector field ~u(~r).30)

A50 First, a rank-2 tensor Tij can be divided into its an-
tisymmetric part and the symmetric part. The former
gives Eq. (130), which has three independent components.

The latter, , can be further decomposed into irre-

ducible parts, because we can extract out a scalar from it:

= = trT . Let the scalar projector be 1
N . A

projector must be idempotent; as 1
N 2 = 3 1

N 2 , N = 3.

Hence, we have the decomposition Eq. (26).32

A51 Our definition of the inertia tensor is a machine that has
one input for an angular velocity vector and one out-
put for giving the corresponding angular momentum vec-
tor (Eq. (19)). Thus, it is a (11)-tensor. In the graphi-
cal notation that distinguishes contravariant and covariant
indices,

=I dm
r

r

. (133)

A52 . = = 3! (134)

= = =3! 1!2! (135)

= 3! = 2!1! (136)

= 3!0! (137)

A53 (a) A geometric reasoning for a moment reveals that a
vector ~r is transformed into ~r ′ = ~r + ε~n × ~r under
an infinitesimal rotation of angle ε with respect to
axis ~n. From Rijxj = x′i = xi + ε εijknjxk + O(ε2),
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we obtain Rij = δij + ε εijknj , which translates into

n,ε
= + ε

n
+O(ε2).

(b) Substituting the result obtained in the previous
problem,

n,ε n′,ε
is equal to

+ ε
(

n
+

n′

)
+ ε2

n n′
(138)

up to O(ε2). We can see that infinitesimal ro-
tation matrices are additive up to O(ε1). Then,

n,ε n′,ε
−

n,εn′,ε
is order of ε2:

ε2
(
n n′

−
n′ n

)
= ε2

n n′

, (139)

where we used the Jacobi identity, Eq. (63), at the
last step.

A54 (a) Since it is an antisymmetric rank-2 tensor, it lives
in the rank-2, spin-1 (antisymmetric) representation:
generators of SO(3), the elements of so(3), are real
antisymmetric matrices.

(b) From completeness, we know that ex ex +
ey ey + ez ez = . Thus, the given

equation is equal to − = 2 ; the

quadratic Casimir is 2.

A55 (a) A = 0; AB = −2 AB ; A

B

C

= − A
B

C
.

(b)
(

n

)0
= , and

(
n

)1
=

n
.
(

n

)2
=

− , as calculated in P8. Now, recall that
, a shorthand for − n n , selects

components that are orthogonal to ~n; therefore,(
n

)3
= −

n
= −

n
. This is proportional to

(
n

)1
: the sequence is periodic. Hence,

(
n

)4k+1
= −

(
n

)4k+3
=

n
(140)

(
n

)4k+4
= −

(
n

)4k+2
= (141)

for any integer k ≥ 0, and
(

n

)0
= .

A56 From the results of the previous problem,

n,α
= exp

(
α

n

)
(142)

= + ( α1! − α3

3! + · · ·)
n

+ (−α2

2! + α4

4! + · · ·)

= + sinα
n

+ (cosα− 1)

= cosα + sinα
n

+(1− cosα) n n . (143)

A57 (a) tr
(

n,α

)
= cosα tr

( )
+ sinα tr

(
n

)
+ (1 −

cosα) tr
(

n n
)

= 3 cosα + 0 + (1 − cosα) = 1 +
2 cosα.

(b) = = = = = = · · · (the la-

bel “n, α” omitted to avoid clutter); this little one-
dimensional creature living on a golden braided knot

proliferates eternally!12 This means that is a dis-

tinguished vector: an eigenvector with eigenvalue one

of the rotation , i.e. it remains the same after being

rotated. Therefore, we conclude that it is parallel to
the rotation axis.

Using Rodrigues’ formula, we can explicitly calcu-
late it in terms of ~n and α: n = −1

2 sinα

(or, = − = 3 − tr
( )

=

3− (1 + 2 cos 2α) = 4 sin2 α.) This provides a formula
for finding the corresponding rotation axis when a ro-
tation matrix is given.

(c) Since tr
( )

= 1 + 2 cosα, the spin-2 part of

is equal to 1
2

(
+

)
− (1 + 2 cosα)/3 =

(1− cosα)
(

n n −
)
.

A58 At r > 0,

r−3 r
= −3r−4

n r
+ r−3 (144)

= −r−3
(

3
n n

−
)
. (145)

This confirms Eq. (29) except for the delta function term.
(Note that Eq. (145) is traceless and symmetric; it is
spin-2. There is no spin-1 part because ∇ × (~n/r2) = 0.
Recall that ∂[i(nj]/r

2) and ∇× (~n/r2) are compatible, as
explained in A49b.) However, to examine whether there
sits a delta function at the origin, we have to investigate
the behavior of ~n/r2 at r → 0, while it is well-known that
∇ · (~n/r2), i.e., trace of ∂i(nj/r

2), is 4πδ(3)(~r ). Assume

that the singular term of ∂i(nj/r
2) is cijδ

(3)(~r ), where
cij is a constant tensor. Then, cij should not have a
particular preferred direction, because ~n/r2 is an isotropic
vector field. Its components must be unchanged under
rotation, i.e., it must be a scalar. Thus, cij only has the

trace-only part, 1
3δijckk. ∇ · (~n/r2) = 4πδ(3)(~r ) confirms

that ckk = 4π. Therefore, the delta function term is
4π
3 δijδ

(3)(~r ). To sum up, ∂i(nj/r
2) has spin-0 and spin-2

parts but no spin-1 part, and the two parts are the delta
function term and Eq. (145), respectively.

A59 Since ~p and ~m are constant vectors, they can be freely
overpass the differentiation loop. Proofs of Eq. (27) and
Eq. (28) proceed as follows.

+
r3

nn3 −

pp

4πr2
n1

4π

p

− =
3
δ(3)(r)

1−

p

(146)

+
nn3 −

p

p

r34π
=

3
δ(3)(r)

1− p (147)
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=
1

4π r2
nm 1

4π r2
n

m

− (148)

= − 1

r34π

m m

n3
δ(3)(r)

1−
n

3
m

−

=
3
δ(3)(r)

2 − 1

r34π

m
3 − +3 2m

m

nn

m

nn

m

mnn3
r34π

m=
3
δ(3)(r)

2 − −
(149)

A60 Note that, for a scalar field Φ(~r), if, −∇2Φ(~r ) = δ(3)(~r )
and Φ(~r ) → 0 as r → ∞, then Φ(~r ) = 1

4πr . Let us

denote this as “Φ(~r ) = 1
−∇2 δ

(3)(~r ) = 1
4πr” in shorthand.

If the boundary condition is different, we formally write
“Φ(~r ) = 1

−∇2 δ
(3)(~r ) + 1

−∇2 0,” where 1
−∇2 0 means an

element in ker[−∇2] (i.e., a term that vanishes when being
subjected to −∇2) that is responsible for matching the
boundary conditions.

(a) Taking divergence to µ uu − p = f δ(3)(~r )

gives − pp = f δ(3)(~r ) , since uu = 0. Taking

1
−∇2 to this equation gives p = f 1

4πr
+ 1
−∇2 0 =

− 1
4πr2 f n + 1

−∇2 0 . Since − 1
4πr2 f n → 0 when

r →∞, the homogeneous solution 1
−∇2 0 should be p0

provided that the given boundary condition holds.

(b) We have determined the pressure field, so sub-

stitute it into the original equation: µ uu

=− 1
4πr2

nf + f δ(3)(~r ). Now, take 1
−∇2 to both

sides. The delta-function term becomes 1
4πr f . How

about the first term in the right hand side? Note
that −r2∇2~n(= − °∇2~n) = 2~n; 1

−∇2 (~n/r2) = 1
2~n.

Thus, it becomes − 1
8π nf = − 1

8πr f . Adding

the two, we obtain the following. (The tensor in the
shaded area is called the Oseen tensor.)

( )

f

u
n

n

f

+
1

µ

1

8πr
= (150)

A side note: we found − °∇2~n = 2~n fruitful. Its
generalization to arbitrary ` would be

− °∇2

[

n n n

  ]
= `(`+ 1)

n n n

 

(151)

so that

(
−∇2 − `(`+ 1)

r2
)
[

1

r
n n n

  ]

= 4πδ(3)(~r )
n n n

 

.

(152)

A61 Since P`(~n
′ · ~n) = P`(~n · ~n′) for arbitrary unit vectors ~n

and ~n′, should be the same if the upper terminals

and the lower terminals are swapped. The self-explanatory
design of this is to choose a horizontally symmetric shape.

A62 Consider ` symmetrized ~r ’s:
 

rrr

. Taking Lapla-

cian, , to this, as rr = 0, we get

2

 

rr
+ 2

 

rr
+ · · · (153)

∝
 

rr
. (154)

Refer to the calculations in A32. Note that the equality
from Eq. (153) to Eq. (154) holds because the ` lines are
symmetrized so that all terms in Eq. (153) are identical.

(The proportionality constant will be 2
(
`
2

)
, since the

number of ways to connect two lines out of ` is
(
`
2

)
.)

Note that the ` ends of are by definition totally

symmetric. Therefore, taking Laplacian to

r r r

 

will

give the following.

rr r r

∝
rr

=

rr

(155)

Therefore, connecting the first and second lower indices

of gives zero; so do any of its two lower indices; so

do any of its upper indices. (But not for one upper index
and one lower index.) Thus, it is “traceless.”

A63 Multipole expansion of |~r − ~r ′|−1 for |~r ′| < |~r| gives

∞∑

`=0

r′`

r`+1
P`(~n · ~n′) =

∞∑

`=0

1

r`+1

 

n n n

r′ r′ r′

, (156)

where r := |~r|, r′ := |~r ′|, ~r := r~n, and ~r ′ := r′~n′.
Meanwhile, from Taylor expansion, |~r − ~r ′|−1 is equal to

∞∑

`=0

(−)`

`!

 

r′ r′ r′

1/r , (157)

i.e., shifting |~r |−1 = 1/r by ~r → ~r − ~r ′ (thus the factor
(−)`). At first glance, Eq. (158) may be concluded by com-
paring Eqs. (156) and (157) according to the order of ~r ′:
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r

1
 

-( )

 

= - traces

n n n

 
+r 1

 

�!
. (158)

However, there is a caveat here: this argument only works
for ~r 6= 0. There can sit singularities at r = 0. To see this,
consider the case ` = 2. We have

= =
r3

3 −nn2!

r3
1/r

n n

, (159)

which is Eq. (29) without the delta function term. In
fact, Eq. (158) is an “illegal” tensor equation, because
the left hand side is totally symmetric and traceless (as
we have shown in P62), while the right hand side is
totally symmetric but not traceless. Therefore, we need
“−(traces).”

r

1
 

-( )

 

= - traces

n n n

 
+r 1

 

�!
(160)

While ∇2(1/r) = −4πδ(3)(~r), the “−(traces)” contains
(`−2)th-order, (`−4)th-order, · · · derivatives of 4πδ(3)(~r).
For example, for ` = 2, the trace term we should subtract

from = =
r3

3 −nn2!

r3
1/r

n n

is 1
3 1/r , which is equal to − 4π

3 δ
(3)(~r).

A64 (a) For ` = 2, = 3
2 − 1

2 is traceless, as

3
2 − 1

2 = 3
2 − 1

23 = 0.

For ` = 3, we have = 5
2 − 3

2 and

5
2 − 3

2 = 5
2 − 3

2
5
3 = 0, as 3 =

+ + = 3 + + = 5 .

(b) Let = a4 + a2 + a0 . (Note

that a3 and a1 terms cannot appear.) Then, trace-

lessness implies a4 + a2 + a0 = 0.

Doodling diagrams for a moment, one can see that(
4
2

)
= 5 + 2 + . Using this, one obtains

(a4 + 7
6a2) +( 1

6a2 + 10
6 a0) = 0. Therefore,

a4 : a2 : a0 = 35 : −30 : 3. Since P4(~n · ~n) = 1,
a4 + a2 + a0 = 1. In conclusion, a4 = 35

8 , a2 = − 30
8 ,

and a0 = 3
8 .

A65 Recall that = and = 3
2 − 1

2 . Also, note

that ~e+ ·~e+ = 0 and ~e− ·~e−= 0.

•
√

3
4π

n

e+

=
√

3
4π~e

+ · ~n =
√

3
4π (−x+iy√

2r
)

= −
√

3
8π sin θ eiφ = Y+1

1 (θ, φ);

• 2
3

√
15
8π

n n

e+ e+

= 2
3

√
15
8π

(
3
2 (~e+ · ~n)2 − 1

2 (��
��~e+ ·~e+)(~n · ~n)

)

=
√

15
8π (−x+iy√

2r
)2 =

√
15
32π sin2 θ e2iφ = Y+2

2 (θ, φ);

• 2
3

√
15
4π

n n

e+ e0

= 2
3

√
15
4π

(
3
2 (~e+ · ~n)(~e 0 · ~n)− 1

2 (��
�

~e+ ·~e 0)(~n · ~n)
)

=
√

15
4π (−x+iy√

2r
) zr

= −
√

15
8π sin θ cos θ eiφ = Y+1

2 (θ, φ).

One can obtain further spherical harmonics in a similar

manner. Note that the normalization constants —
√

3
4π ,

2
3

√
15
8π , 2

3

√
15
4π , and all that — can be found algebraically

(rather than doing integrals in a typical manner) by the
following identity, where

∫
d2Ω =

∫
sin θdθdφ is the solid

angle integral.

〈ni1ni2 · · ·ni2`〉 :=
1

4π

∫
d2Ω ni1ni2 · · ·ni2` (161)

=
1

2`+ 1
δ(i1i2 · · · δi2`−1i2`) (162)

That is, the spherical average of ni1ni2 · · ·ni` is equal to
the average of “all possible contractions” of indices i1 to
i2` by Kronecker delta divided by 2`+ 1. For example,

〈ninj〉 =
1

3
δij , (163)

〈ninjnknl〉 =
1

5

(
1

3
(δijδkl + δliδjk + δikδjl)

)
. (164)

Eqs. (163) and (164) show up in standard textbooks.33,34

In the graphical notation,

n n

〈 〉
=

1

3
, (165)

n n n n

〈 〉
=

1

5
. (166)

Note that = 1
3

(
+ +

)
. Then,

demanding 〈Ym
`
∗Ym

` 〉 = 1
4π ,

• 1
4π = |c|2

〈

n

e+

n

e+
〉

= |c|2 1
3

e+ e+

= |c|2 1
3

=⇒ c :=
√

3
4π .

Here, ~e+ = − 1√
2
(~ex − i~ey) is a dual vector; numer-

ically, ~e+ := (~e+)∗. Similarly, ~e0 := (~e 0)∗ = ~ez and
~e− := (~e−)∗ = 1√

2
(~ex + i~ey). These dual basis vectors

satisfy ~em
′ ·~em = δm

′

m (m,m′ = +, 0,−).

For Y+2
2 and Y+1

2 , note that the following holds because
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is traceless and symmetric.

〈

n n n n

〉
(167)

=
1

15

[

��
�
��
�

+ +

]

=
2

15
(168)

Then, using Eq. (168) with = 3
2 − 1

2 ,

• |c|2
〈

n n

e+ e+

n n

e+ e+
〉

= |c|2 2
15

e+ e+ e+ e+

= |c|2 2
15

3
2
3
2

e+ e+ e+ e+

= |c|2 2
15 ( 3

2 )2 =⇒ c := 2
3

√
15
8π ;

• |c|2
〈

n n

e+ e0

n n

e+ e0
〉

= |c|2 2
15

e+ e0 e+ e0

= |c|2 2
15

3
2
3
2

e+ e0 e+ e0

= |c|2 2
15 ( 3

2 )2 1
2

e+ e0 e+ e0

= |c|2 2
15 ( 3

2 )2 1
2

=⇒ c := 2
3

√
15
4π .

Note that the identity Eq. (162) enables us to do spher-
ical integrals in a coordinate-free way. It turns out
to be useful in other calculations too. For example,〈
cos4 θ sin2 θ sin2 φ

〉
=
〈
(~ez · ~n)4(~ey · ~n)2

〉
= 1

7

(
average of

all possible contractions of ~ez,~ez,~ez,~ez,~ey,~ey
)

= 1
7

[
1
6! ·
(
3
1

)

2!4!
]

= 1
35 , counting the number of ways for the grouping(

(~ey,~ey), (~ez,~ez), (~ez,~ez)
)
;

〈
cos2θ sin4θ sin2φ cos2φ

〉
=〈

(~ez ·~n)2(~ex ·~n)2(~ey ·~n)2
〉

= 1
7

[
1
6! · 3!2!3

]
= 1

105 , counting

the number of ways for the grouping
(
(~ex,~ex), (~ey,~ey),

(~ez,~ez)
)
.

A66 By “operator,” we mean that i~
i

maps a vector into

another vector through its terminals drawn horizontally.
It is one of the possible realizations of the spin operator:
spin operator for spin-1 states (for example, for spin-1/2
states, we cannot use i~

i
).

The sudden appearance of ~ here may evoke an impres-
sion that we are making a stark transition to the quantum
world, but in fact it is not a necessary one; one could have
defined

i
, not i~

i
, as a spin operator. Usually,

physicists prefer to carry i~ to let the generators be Hermi-
tian (observables). In a sense, we are not really introducing
quantum mechanics but doing representation “practice”
(cf. representation theory) of the rotation group.

(a)
i j

−
j i

=
i j

is the Jacobi identity

that we have discussed in P6a, P11, and P16.
Multiplying (i~)2 gives the proposed equation. Then,

what is its interpretation? Let i~
i

:=
i

S .

Then, we have

i

S

j

S
−

j

S

i

S
= i~

i j

S
(169)

This is the familiar “[Ŝi, Ŝj ] = i~εijkŜk!”

One can explicitly assure that
i

S is the spin op-

erator for spin-1 states by calculating its components
(“matrix elements”). Sandwiching with ~em′ and ~em,

(Si)
m

m′ :=
i

em′ emS (170)

= i~
i

em′ em = i~(~em×~em′)i . (171)

Displaying these numbers in a matrix format,
m′ = +, 0,− labelling rows and m = +, 0,− labelling
columns, we get the following.

[
(S3) m

m′
]

= ~




+ 0 −
+ 1
0 0
− −1


 (172)

[
(S1) m

m′
]

=
~√
2




+ 0 −
+ 1
0 1 1
− 1


 (173)

[
(S2) m

m′
]

=
~√
2




+ 0 −
+ −i
0 i −i
− i


 (174)

(Notice: zeros sitting in the blank spaces, omitted
to avoid clutter.) These matrices should be familiar
from undergraduate quantum mechanics.

(b) Explicit calculation with ~e+ = − 1√
2
(~ex + i~ey),

~e 0 = ~ez, and ~e− = 1√
2
(~ex − i~ey) reveals that

i~~ez × ~e+ = +~~e+, i~~ez × ~e 0 = 0~~e 0, and
i~~ez × ~e− = −~~e−; ~e+, ~e 0, and ~e− are the spin-1
eigenstates |1, 1〉, |1, 0〉, and |1,−1〉, respectively.
(Note that their eigenvalues with respect to the

Casimir operator Ŝ2 = (i~)2 = 2~2
(refer to P54b) are 2~2.)

“i~~ez×”= i~ ez is the generator of z-axis ro-

tation, while the rotation matrix corresponding
to z-axis rotation of rotation angle α is given by

ez,α
= exp

(
α

ez

)
= exp

(
α
i~ i~ ez

)
. ~e+, ~e 0,

and ~e− are the eigenvectors of the generator of
z-axis rotation and so are the eigenvectors of z-axis
rotation. They gain phase factors eα/i, 1, and e−α/i

under
ez,α

, respectively.

(c) From P65, we know that Y+1
2 (θ, φ) = 2

3

√
15
4π

n n

e+ e0

,

where (ni) = (sin θ cosφ, sin θ sinφ, cos θ). Ro-
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tating Y+1
2 (θ, φ) by an infinitesimal angle ε with

respect to axis ~ez, we get Y+1
2 (θ, φ − ε). (Or, in

the differential operator language, we are acting
(1− ε~ez · ~r × ∇) =

(
1 + ε~ez

i~ · (−i~~r × ∇)
)

to

Y+1
2 (θ, φ)) This corresponds to substituting n

into
ez,−ε

n =
ez,ε

n . The fact that is a

tensor allows us to “push the arrowheads” as the
following way, where the labels “ez, ε” are omitted to
avoid clutter.

n n

e+ e0

=

n n

e+ e0

= (1− iε)
n n

e+ e0

(175)

Here we used
ez,ε

em = em +ε
ez

em +O(ε2) =

(
1 + (−)mε/i

)
em + O(ε2). Thus, Y+1

2 (θ, φ)
transforms alike to ~e+, as it gains the phase factor
(1− iε) when subjected to infinitesimal z-rotation.

In fact, one can see this by the explicit formula
of Y+1

2 (θ, φ) that is proportional to eiφ so that

eiφ → ei(φ−ε) = (1 − iε + O(ε2))eiφ. However,
the strength of tensor language is that we can
easily see that this is generalized to arbitrary
Ym
` . By the “arrow pushing,” the transformation

n →
ez,ε

n was equivalent to dressing all

~em’s with outward arrowheads but leaving ~n’s as
they were. Therefore, Y+1

` (θ, φ) must have the same

transformation property with e+ , Y+2
` (θ, φ)

must have the same transformation property with
e+

e+
, and so on.

(d) Consider an SO(3) transformation of an arbitrary

rank-2 tensor T . Each index will be dressed

with outward arrowheads (rotation matrices):

T
→

T
. If = + ε

i~
n

+ O(ε2) for a

given fixed unit vector ~n, that is,

T
−

T
=
εni
i~

[
i

T
+
i

T

]
. (176)

Setting this to zero gives the infinitesimal version
of rotational invariance. (We apologize for using a

different symbol
i

for denoting the generators of

rotation, i~
i

, instead of the earlier
i

S for the

sake of visual brevity.) One can think the bracketed
term in the right hand side of Eq. (176) as a result

of acting Ŝi to T , because it measures how T

deviates from itself when infinitesimally rotated.

Acting Ŝi then Ŝj to T , we get

i
j

T
+ i
j

T
+ i
j

T
+ i
j

T
. (177)

Contracting this with δij and substituting

i
= i~

i
, we obtain Ŝ2 = ŜiŜi = δijŜiŜj

applied to T .

(i~)2
[

T
+

T
+ 2

T

]
(178)

In general, we cannot determine the value of Eq. (178)

for an arbitrary rank-2 tensor Tij =
i j

T
. However,

its traceless and symmetric part, 2
3

T
, is an eigen-

state of Ŝ2 having an eigenvalue 2(2 + 1)~2 = 6~2.
To see this, it suffices to show that the answer of this

problem is 6~2 .

(i~)2
[

+ + 2

]
(179)

= ~2
[
2 + 2 + 2

]
(180)

= ~2
[
4 + 2 − 2

�
�
�
]

(181)

= ~2
[
6

]
(182)

This justifies to call the symmetric traceless part of
a rank-2 tensor by “spin-2 part!”

How about the trace-only part? Surely, there are no

rooms for attaching
i

to a scalar, so it will have

an eigenvalue 0 for Ŝ2. For the antisymmetric part,

(i~)2
[

+ + 2
]

(183)

= ~2
[
2 + 2 + 2

]
(184)

= ~2
[
4 + 2 + 2

�
�
]

= ~2
[
2

]
(185)

We obtain the eigenvalue 1(1+1)~2; thus, it is indeed
a “spin-1 part.” Note that rank-1 tensors (vectors)

also have an eigenvalue 1(1 + 1)~2 for Ŝ2; the secret

underlying here is the arrow pushing = − 1
2 .

Considering the infinitesimal version of this arrow
pushing, one can confirm that applying Ŝ2 in the

upper two indices of = − 1
2 is identical to

applying Ŝ2 in the middle internal line, which will

give (i~)2 = 2~2 .

Lastly, if you are interested, try applying Ŝ2 to the

spin-` representation with δii = = d.

This will give the Casimir of spin-` representation of
SO(d), `(`+ d− 2).

A67 Before we proceed, it is fruitful to consider the following
subdiagram first.
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=
3

2
(186)

Eq. (186) is easily confirmed if one understands that
2
3 is the “symmetric traceless projector” (so that

2
3 = ( 2

3 )2 ) and = . Or, one

can see it by direct calculation:

3

2

3

2
− 3

2

1

2
− 3

2

1

2
+

1

2

1

2

=
3

2

[
3

2
− 1

2

]
. (187)

(a)
p m

= 3
2

p

m

= 3
2

p

m

= 3
2
3
2

p

m

− 3
2
1
2

p

m

= 1
2 (0 + 3

2
3
2 ~m× ~p)− 3

2
1
2~p× ~m = 15

8 ~m× ~p .

Consider a ball of radius R, uniformly polarized with
total electric and magnetic dipole moments ~p and
~m. What would be the electromagnetic momentum
of this system?13 The angular integration of this
problem can be worked out algebraically by tensor
methods. Contribution from the inside of the ball
is 1

µ0c2

(
(− µ0c

2

4πR3 ~p) × ( 2µ0

4πR3 ~m)
)
4π
3 R

3 = µ0

πR3
1
6 ~m × ~p.

For the outside of the ball, where the electric and
magnetic fields are given by

µ0c
2

2πr3
n n

p

and
µ0

2πr3
n n

m

, (188)

respectively (Eqs. (27) and (28)), we have

µ0

π

[ ∞∫

R

r2dr
1

r6

][
1

4π

∫
d2Ω

p m

n n n n

]
(189)

=
µ0

π

1

3R3

[
2

15

p m

]
(190)

= µ0

π
1

3R3

[
2
15

15
8 ~m×~p

]
= µ0

πR3
1
12 ~m×~p. (191)

Eq. (168) is used when obtaining Eq. (190). Finally,
the answer is µ0

πR3 ( 1
6 + 1

12 )~m× ~p = µ0

4πR3 ~m× ~p.

(b)

n n n n

= 3
2

n n

n n

= 3
2

[
3
2

n n

n n

− 1
2

n n

n n

]
= 3

2 .

Consider two point dipoles ~µ1 and ~µ2 in thermal
equilibrium at an inverse temperature β. The dipole
moments can orient all directions and the separation

between the two is fixed at ~R := R ~N . The canonical
partition function is equal to the following, where
K is a constant that measures the coupling between
two dipoles (2µ0µ1µ2

4π if the dipoles are magnetic),
~µ1 := µ1~n, and ~µ2 := µ2~n

′.

Z = (4π)2

〈〈
exp


−βK N

N

n

n′


〉

~n

〉

~n′

(192)

〈· · ·〉~n and 〈· · ·〉~n′ denote spherical averaging with
respect to solid angle measure corresponding to ~n
and ~n′, respectively. From this partition function, we
can obtain the average force between the two dipoles,
which will result in Lenard-Jonnes potential.

What would be the leading nontrivial term? A
typical calculation that employs coordinates θ, φ,
θ′, and φ′ goes pages long,35 yet obtaining the
next term in such way by hand will be much more
complicated. However, with the aforementioned
algebraic (or combinatoric) spherical integrating and
the graphical notation, even a general formula for
terms of arbitrary orders is easily obtainable by a
“hairband cutting game.”

First, consider the β2 term in the expansion of the
exponential Eq. (192). (Notice that terms of odd
powers of β vanishes.)

(4π)2
(βK)2

2!

〈〈

N

N

n

n′

N

N

n

n′〉

~n

〉

~n′

(193)

=(4π)2
(βK)2

2!

1

32

(

N

N

N

N

)
(194)

We have already calculated the bracketed term in
Eq. (194) in the main problem: it was 3

2 . However,
let us revisit it in terms of the “hairband cutting

game.” Recall that
N

N
= 3

2 N

N − 1
2 . Substituting

this, the term within the parentheses in Eq. (194)
expands into four terms. Three of them “breaks the

hairband:”
N

N

N

N
,

N

N
, and

N

N
. The remaining

one does not. If a “hairband” is broken, its value

is 1 ( ~N · ~N or ( ~N · ~N)2). If it is not, its value is 3
(δii). Thus, the bracketed term in Eq. (194) is equal
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to 1 · ( 3
2
3
2 + −1

2
3
2 + 3

2
−1
2 ) + 3 · (−12 −12 ) = 3+3

4 = 3
2 .

The graphical notation effectively helps doing this
“hairband combinatorics”—counting the possibilities
of getting broken or intact hairbands—for arbitrary
orders of β. The resulting formula is the following.

〈〈(

N

N

n

n′ )2` 〉

~n

〉

~n′

=
1 + 21−2`p`(3)

(2`+ 1)2
, (195)

p`(d) :=





1 (` = 1)

1+
`−1∑
j=1

(
`
j

)
d2j−1 (d− 2j) (` > 1)

p2(3) = 7, p3(3) = −71, and so on; Eq. (195) is equal
to 1

22
3
2 , 1

24
30
25 = 1

24
6
5 , and 1

26
−78
49 for ` = 1, 2, and

3, respectively. Meanwhile, obtaining the general
formula of higher-order terms by integration intro-
ducing angular coordinates is virtually an impossible
task by hands. This example serves as a instructive
demonstration for diagrammatic perturbation.

(c) 2
3
2
3 = 2

3

= 2
3

[
3
2 − 1

2

]
= 2

3 ( 3
2
32+3

2 − 1
23) = 5 .

This is the dimensionality of the spin-2 projector,
2
3 (recall the combinatorics in P50).

D. Addendum

A68 The canonical commutation relation, [xi, pj ] = i~δij , reads

r p,

[ ]
= i~ . Let us employ this in a form of Eq. (33),

r p
=

p r
+ i~ .

(a)
r p

=
p r

+ i~ =
p r

+ 3i~.

(b)
r p

=
p r

+ i~ = −
p r

+ 0.

A69
L L,

i j

[ ]

= i~
L

i j

.

The orbital angular momentum, L̂i = εijkx̂j p̂k =

−εijkp̂j x̂k =
p r

i

, is an implementation of this:

p r

i

p r

j

=
p p

i

r r

j

+ i~
p

i

r

j

(196)

=
p p

i

r r

j

+ i~
p r

i j

=
p r

i

p r

j

− i~
p

i

r

j

+ i~
p r

i j

=
p r

i

p r

j

− i~
p r

i j

+ i~
p r

i j

=
p r

i

p r

j

+ i~
p r

i j

. (197)

This completes the proof. The last step is due to the
Jacobi identity (P16).

A70 Connecting the two ends of Eq. (196) by a Kronecker delta,

r p r p
=

r p r p
−

r p r p
(198)

=
r r p p − r pi~ − p r r p − i~ r p

= r̂2p̂2 − 2i~ ~̂r · ~̂p− p r r p

= r̂2p̂2 − 2i~ ~̂r · ~̂p−
r p r p + i~

r p

= r̂2p̂2 − 2i~ ~̂r · ~̂p− (~̂r · ~̂p)2 + 3i~ ~̂r · ~̂p
= r̂2p̂2 − (~̂r · ~̂p)2 + i~ ~̂r · ~̂p (199)

A71 This instructive problem is based on the so(1, 3) ∼=
su(2)⊕ su(2) algebra. For more precise treatment that dis-
tinguishes upper and lower indices, see, e.g., Srednicki.36

Use completeness first.

S = + = + (200)

Then, take the blue trace to eliminate the blue generator.

S = + = d + 0 (201)

Massaging the both sides, we get the answer.

=
1

d S
(202)

A72 (a)
−2 −2

= 4 , and
−2 −2

=
−2 −2

=

4 = 4 = 4 . Subtracting the

two gives
2

4 =
−2

−4 .
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(b) The lesson from P49b is that an I-line can be
converted to an i-line by the cross product machine
and vice versa. Refer to Eq. (132). The converters
were 1

2! and − ; this is a standard convention
in tensor calculus distinguishing contravariant and
covariant indices (up-down hierarchy). Meanwhile,
a different normalization, i√

1!2!
and i√

1!2!
is

more apt for the “heterarchized” calculus.

Then, εijk with each of its indices converted to
I-indices perfectly copies the syntax of εijk to the
I-world. As demonstrated in Eq. (205) to Eq. (207),
an I-world expression is translated into an i-world
epsilon network by the converters and brought back
to the I-world after simplification.

( i√
2
)3 = −( i√

2
)3 = 2

√
2i ; (203)

(−1α3 )2 = (−1α3 )2(α2)5 (204)

= α4(−2) (205)

= −2α4

[
−

]
(206)

=���−2α2

[
−

]
, (207)

where α := i√
2
. The rightmost expression in

Eq. (203) is the answer for this problem with its com-
plex conjugate, because we could have used −i√

1!2!

and −i√
1!2!

as converters. The resulting εIJK sat-

isfies total antisymmetry εIJK = −εJIK = · · · and
εIJKεKLM = δILδJM − δIMδJL. (Also εIJKεLMN

= 3!δI[Lδ
J
Mδ

K
N ]; check it!)

Note that = 1
2

[
−

]
not in gen-

eral is proportional to Eq. (207). While transforming
Eq. (205) into Eq. (207), we used the fact that is

equal to −12 so that it can be “factorized” into two
tripod totally antisymmetric tensors, which is not
true in dimensions other than three.

One more comment: we could have determined

εIJK by first setting it to be c then finding the

value of c. Then, following the same calculation in
Eq. (205) to Eq. (207), the condition for = −
to be reproduced turns out to be c2 = −8. We
employ this approach in the next problem.

(c) Let ↔ c . c is a constant to be deter-

mined. First, let us impose the condition that it
reproduces = − . Note that

1

2

[
−

]
= 2 (208)

holds generally (cf. the internal wiring in Eq. (43)).
Then, from the binor identity + 2 = 0,

Eq. (208) is equal to

− = − ↔ − 1

c2
. (209)

Therefore, c2 = 2; c =
√

2 or c = −
√

2. Next, let

us demand that c2 = −2 . Using only

= d and the definition of the antisymmetrizer,
we have

=
1

4

[
− 2 +

]
(210)

=
d− 2

4
. (211)

Therefore, the equation c2(d − 2) = −8 must be
satisfied. In the previous problem, c2 = −8 so that
d = 3 (δii = 3). In case of binors, c2 = 2 so that
d = −2!

As d = δaa, it seems that binors are tensors living in
a (−2)-dimensional space: SO(−2)-tensors. In this
sense, Penrose17 introduced the idea of “negative
dimensional tensors.” The reader might find it
uncomfortable to accept. Practically, this negative
dimensionality can be understood as a consequence
of “heterarchizing” spinors. The binor language
can be repackaged into spinor algebra, where the
converter between binors and SO(3)-vectors being
the Pauli matrices. Also, the distinction between
contravariant and covariant indices is restored, such

as → − = −
a

b
= −εabεab = εabε

ba and

= − 1
2 → = + 1

2 (εabεcd = δac δ
b
d − δadδbc).

Since εabε
ba = −2, we have a negative d. Meanwhile,

while restoring hierarchy, one observes that sym-
metrization and antisymmetrization changed their
role. Cvitanović and Kennedy16 discussed on this
point and clarified the meaning of tensors of negative
dimensions.

Antisymmetrizing two d-dimensional indices, we
obtain a collective index of dimensionality

(
d
2

)
. d = 3

produces the self-similar infinite tower: 3,
(
3
2

)
= 3,

((3
2)
2

)
= 3, · · · . (It is the “critical point.”) If we start

from binors, we have −2,
(−2

2

)
= 3,

((−2
2 )
2

)
= 3, · · · .

Once we entered the three dimensions, we will always
stay there. Thus, problems (b) and (c) complete the
exploration of the stairs of the recursive tower.

Bonus Cuts

Listen to Tensors

https://soundcloud.com/joonhwi-kim/listen-to-tensors

https://soundcloud.com/joonhwi-kim/listen-to-tensors
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Riemann Tensor

:=

−
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