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Abstract. Flux-ratio anomalies in quadruply imaged quasars are sensitive to the imprint of
low-mass dark-matter haloes. The reliability of detection depends on the robustness of the
smooth mass model. Optical surveys show that massive early-type galaxies similar to galaxy-
scale gravitational lenses depart from perfect ellipticity, exhibiting m = 3 and m = 4 multipole
distortions. We construct the semi-analytic, five-dimensional joint population prior for the
m = 3 and m = 4 amplitude and orientation as well as the axis ratio of the deflector, calibrated
on the sample of 840 SDSS E /S0 galaxies. The parameters are fitted via hierarchical Bayesian
modeling, minimizing a joint Jensen—Shannon divergence between model and data. We use
this prior to model the mass distribution of mock lenses with HST quality data with different
multipole amplitudes. We find that we robustly measure the true multipole amplitudes and
orientations. Compared to fits that use only the four point-image positions, adding the lensed
host-galaxy arcs tightens the 68 % credible regions of multipole parameters by factors of 3-12
and reduces the predicted flux-ratio uncertainties by a mean factor of ~6. This analysis does
not include substructure or a complex source, and thus can be considered an upper limit on
the expected improvement. The combination of arc information and realistic multipole priors
therefore yields an order-of-magnitude improvement in smooth mass model precision, paving
the way for more robust measurements of dark-matter substructure.
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1 Introduction

Dark matter dominates the mass budget of the Universe, yet its particle nature remains
unknown [1]. Strong gravitational lensing of quasars provides one of the few probes of
dark matter on sub-galactic scales because the deflection angles are set directly by the mass
distribution—even in the absence of luminous tracers [2]. While various methods such as
stellar stream perturbations and galaxy kinematics use baryonic tracers to infer the presence
of low-mass dark matter halos [e.g. 3, 4], these approaches are often subject to degeneracies
with baryonic physics. In contrast, gravitational lensing offers a more direct and clean probe
of the mass distribution, enabling discrimination among dark matter models based on the
abundance and internal structure of subhalos [see 2, and references therein)|.



The flux ratios of multiple quasar images are among the key observables of strong
gravitational lensing. Flux ratio anomalies refer to the disparity between the observed
flux ratios of lensed images and the flux ratios expected from a smooth mass distribution,
which represents the large-scale distribution of the mass of the main lensing galaxy and
its dark matter halo (a.k.a. “macromodel”). The macromodel is primarily responsible for
causing multiple images of the background source to appear and determining their positions.
Low-mass dark matter halos within the lensing galaxy and along the line of sight (a.k.a.
“substructure”) make relatively little impact to the image positions relative to measurement
uncertainties, but can introduce perturbations to the lensed image magnifications [see 2, 5-7,
and references therein|. Note that such flux ratio anomalies may also arise from microlensing
le.g. 8] or inaccuracies in the smooth lens model [e.g. 9]. These effects need to be considered
carefully when attributing flux ratio anomalies to dark matter substructure. Studies on
multiple lens systems have shown that the amplitude and frequency of flux ratio anomalies
exceed what can be accounted for by these effects alone, lending support to the presence of
low-mass dark matter halos [e.g. 6, 10, 11].

Flux ratio anomalies can reveal the presence of low-mass substructures and have been
used to infer population level statistics of their mass function and mass distribution [12—
14]. However, robust inference from flux ratios requires an accurate smooth mass model.
Traditional analyses adopt an Elliptical Power Law (EPL) profile plus external shear [e.g.
15-18], while recent studies |e.g. 19-21] have begun investigating the effect of deviations from
ellipticity as detected in optical surveys of lens-like elliptical galaxies [22, Hao et al. 2006,
hereafter HO6|.

Multipoles describe higher order perturbations to the mass distribution that cannot be
captured by an elliptical profile [7, 11, 21, 23-28|. Of particular interest are multipoles of
order m = 3 and m =4 as these are prominent deviations from ellipticity observed in the
light distribution of field elliptical galaxies [22]. However, mass multipoles have not been well
measured compared to light multipoles, and there has not been empirically motivated priors
on the multipole amplitudes (as/a, asfa) and orientations (¢p3—do, p4s—p) as a readily usable
form so far. Without such priors, estimating the correct multipole parameters from observed
data can be challenging due to degeneracy. [29] pointed out that, when multipoles are not
included in the lens modeling, they may appear in the external shear that does not agree with
an independently measured cosmic shear.

Existing constraints on dark matter from [30-33] include an m = 4 multipole term, which
adds boxyness and diskyness to the main deflector mass profile. The amplitude of this mass
component is constrained by image positions and flux ratios jointly with the substructure
properties. A recent simulation work presented the dark matter analysis pipeline with both
m = 3 and m = 4 multipoles [20]. A warm dark matter constraint using JWST MIRI
observations with both m = 3 and m = 4 multipoles and flexible ¢3, ¢4 was also presented
recently [34]. These works adopted simple Gaussian priors for the multipole distribution. We
build on these works by increasing the complexity of the prior to be both more flexible, as well
as conditionally dependent on ellipticity. This work provides a continuous and differentiable
joint distribution of multipole parameters to be used as a realistic prior.

Extended arcs—the lensed host-galaxy light—offer a route to break the difficulty of measuring
multipoles. Because arcs wrap around the deflector, they probe the lensing potential over a
much larger azimuthal range than the four point images alone [18, 35]. In this paper, we
demonstrate that incorporating arc information, together with a population prior derived
from HO0G6, tightens the posterior on multipole parameters and predicted flux ratios.



Traditionally, only the lensed point source positions have been used to constrain the
smooth-mass distribution. This yields large uncertainties of order 10-50% in the underlying
smooth-model flux ratios which are comparable to or larger than the measurement uncertainties
of the actual flux ratios themselves [see, e.g. 36|. Existing measurements of lens flux ratios
from HST reach, on average, 6% precision [36], while mid-IR flux ratios measured with
JWST can reach precisions of 1% [37|. Improving the precision of the smooth-model flux
ratio predictions would therefore make a significant impact on the constraining power of
gravitational lenses.

The remainder of this paper is organized as follows. Section 2 introduces our mass-
and light-model parameterization, including the multipoles. Section 3 derives the population
prior from the HO6 catalog. Section 4 describes the mock—data generation and observational
setups. Our inference framework is detailed in Section 5, the results are presented in Section 6,
and Section 7 discusses implications for future dark-matter studies. Throughout we adopt
Ho = 70 kms~*Mpc~!, O, = 0.3, and Q2 = 0.7. LENSTRONOMY? [38, 39] is used for lens
modeling and fitting processes. The multipole prior is released as open-source Python software
MULTIPOLEPRIOR?, along with additional scripts used for its development and visualization
for transparency and reproducibility.

2 Quadruply lensed quasar modeling

In this section, we discribe the model we use to describe quadruply lensed quasars and their
host galaxies.

2.1 Mass model

The mass model includes three components: elliptical base mass model, multipole perturbations,
and shear. Each of them are detailed below. Note that dark matter substructures are not
included in this work to clearly demonstrate the impact of multipoles and lensed arcs without
substructure lensing.

2.1.1 Elliptical base mass model
We adopt Elliptical power-law (EPL), of which the projected surface—mass density takes the

v—1
form k(z,y) = ?’*T'Y <\/qfiiy%> when its major axis is aligned with the x-axis, where 7 is

the 3-D logarithmic slope (2 for isothermal), 6 the circularized Einstein radius, and ¢=b/a
the projected axis ratio [40]. In general, the orientation of the ellipse is denoted by ¢q, the
angle of the major axis and z-axis.

2.1.2 Multipole perturbations

Multipole mass profiles add azimuthal perturbation to the mass profile of the lens, on top of
the elliptical profile. We use the circular multipole convention [9, 26] to be consistent with
H06. However, it should be noted that the elliptical multipoles have been shown to produce
more physically meaningful optical and mass distributions at high ellipticity [see 41, 42] and
are therefore recommended for future optical surveys.

When an order-m multipole is added to an elliptical profile, the isodensity (i.e. constant
convergence k) contours are deformed from a purely elliptical isodensity contours. The

*https://github.com/lenstronomy/lenstronomy
3https://github.com/Maverick-0h/multipoleprior
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Figure 1. Impact of misaligned (¢, # ¢o) m =3 (upper) and m =4 (lower) multipole profile on
the convergence with the angular conventions ¢g and ¢,,. The isodensity curve is shown in cyan.
(Left) Convergence of EPL-only lens mass model with ¢9 = —0.175 (—10°). (Middle) Convergence
of EPL+multipole. (Right) Convergence of m = 3 and m = 4 multipole with a,,/Ja = 0.05 and
¢m = 0.175 (10°). For better visualization, |a,,/a| is set to be larger than expected in typical
systems.

deviation of the new isodensity contour from the ellipse can be expressed with a cosine function
Or = apy, cos(m(é — ¢p)), where r is the polar radius r = /22 + y? and ¢, is the angle of the
multipole profile’s orientation ¢,,. Note that the deviation amplitude a,, depends on which
contour is chosen. When geometric similarity is assumed between the contours on different
scales, the radial deviation is proportional to the size of the ellipse; i.e. a,, x a, where a is the
semi-major axis of the ellipse and satisfies a = i&g //@. The ratio a,,/a is the key parameter
that determines the shape of the deformed isodensity contour.

Choosing the standard isodensity contour with & :% gives the semi-major axis of the
ellipse as the effective Einstein radius a(k=3) = 0g/,/q. The deviation amplitude there,
am(k=73) , is used for setting the deflection potential. The deviation of the isodensity contours

1

from the standard ellipse with k=35 is

6T|H:% = am(”:%) cos(m(gb - ¢m)) (2'1)
With a given value of ap/a, the a,,(v=1) value is calculated by
6

am(k=1%) = apfa a(k=3) = ap/a £ (2.2)

V4

Thus, the deflection potential can be set up based on either a,,/a or a,,(k=3). In this paper,
we stick to a,,/a convention.

We are interested in studying m = 3 and m = 4 multipoles. The m =3 and m =
4 multipoles measure the triangle-like and quadrangle-like deformation on the isodensity
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Figure 2. Impact of aligned (¢, = ¢po) m =3 (upper) and m =4 (lower) multipole profile on the
convergence with different signs of a,,/a. (Left) Convergence of EPL+multipole with a,,/a = 40.05.
(Right) Convergence of EPL+multipole with a,,/a = —0.05. For better visualization, |a,/a| is set to
be larger than expected in typical systems. An isodensity contour is highlighted in cyan color.

contour, respectively. They are parameterized with their multipole strength a,,/a and their
angle relative to the elliptical profile ¢,, —¢g, where ¢y refers to the angle of the elliptical
profile (see Figure 1).

The m = 4 multipole is also known as boxy/diskyness, because it makes an elliptical
profile either boxy or disky. When the orientation of the multipole profile and the elliptical
profile are well aligned (i.e. ¢, & ¢, where ¢g is the angle of the elliptical profile), asfa > 0
results in a disky profile and a4/a < 0 a boxy profile. Meanwhile, the sign of ag/a changes only
the orientation of the deformation, not its overall shape (see Figure 2).

Note that there are different conventions on how to define multipole variables and
we follow the convention of [9, 28, 43]. We allow both signs of a,, and restrict ¢,, €
(=m/2m,7/2m] to avoid angular degeneracy. In Appendix A we provide relations between
this and other commonly used conventions.

2.1.3 External shear

We include external shear which can be caused by external sources such as galaxy clusters or
large-scale structure [44-46].

2.2 Light components

The deflector light and the quasar-host arcs are each represented by an elliptical Sérsic profile

[47]. Deflected quasar images are treated as point sources (delta functions convolved with the
PSF).

3 Population prior for multipole parameter values

In this section we explore what reasonable priors are for the mass multipole parameters.
The multipole parameters of the lens mass profiles have not been well constrained from the



observation so far. However, optical surveys of elliptical-galaxy light profiles can serve as
empirical benchmarks and place conservative upper limits on multipole amplitudes, because
(i) dark-matter halos are well described by simple ellipsoids with negligible higher-order
structure [see 48, 49, and references therein|; (ii) the baryonic disc and bulge introduce non-
elliptical perturbations [e.g. 19]; and (iii) baryons contribute only ~ 30-40 % of the projected
mass within the Einstein radius [50, 51]. The optical a,, and a are defined the similarly
as the mass profile’s isodensity contours, but instead using isophote contours. The ratio
of deformation amplitude and the semi-major axis, a,,/a, has been measured with different
galaxies and at different radii [21, 22, 52-55].

HO06 has shown that m = 3 and m = 4 multipoles have different distributions*. However,
plotting a,,/a together with ¢,,—¢po with different ¢ ranges reveals more correlations from the
data of HO6. See “Observation” columns of Figure 3 for the distribution of (as/a, ¢3—¢o)
and (ayfa, ¢4—po) with different g ranges from the isophotes of 840 E/S0 galaxies®, with the
fourth power of velocity dispersion vgis* as weight%, of which the original data is provided by
HO06. Four important correlations can be observed:

1. ag/a tends to be positive and greater (more disky) when ¢ is smaller (more elliptical).

2. ¢4 — o tends to be close to 0 (more aligned) when ayg/a is positive & greater (more
disky).

3. asfa is symmetric around 0 regardless of ¢; whereas the width of the true distribution
varies.

4. ¢3—¢o does not have a strong correlation with as/a or g.

Based on the behavior of the observed population density, we model the joint probability
density of the multipole variables as

P(am/a7 ¢m_¢07 Q) = P(Q) P(am/a7 ¢m_¢0 | q)
= P(q) Plam/a | q) P(¢m—¢0 | am/a)
by assuming that ¢,,—¢ is conditionally independent of ¢, given a,,/a: P(¢ppm—ado | am/a, q) =
P(¢m — o | amfa). There is no meaningful correlation between the two multipole pairs

(asfa, p3—¢o) and (agfa, o4 — ¢o), so we assume conditional independence between them to
build the probability density of the five variables:

P(asfa, ¢3—o, asja, ¢p1—do, q) = P(q) Plasfa, ¢p3—¢o | q) Plas/a, ¢1—¢o | q)
= P(q) Pas/a | q) P(¢3—¢o | as/a) (3.2)
P(agfa | q) P(ds—g¢o | asfa)

(3.1)

The functional choices are:

e P(q) — skew-normal distribution with three parameters: shape aq, location ,, and
scale wy. Normalized within (gmin = 0.33, gmax = 1) such that qu“f“x P(q) dg = 1.

4More exactly, HO6 showed that au/a tends to have asymmetric distribution toward the positive, whereas
Baja, asfa, and Bsfa do not. See Appendix A for the comparison of two multipole conventions, (am/a, dm—¢o)
and (aum/a, Bm/a).

5The original number of data points is 847, but 7 of them were disposed in conversion and error analysis;
see Appendix C

%0 o Udisz for a singular isothermal sphere, and thus the strong lensing area 052 vdis4; refer to [56]



e P(as/a | ¢) — Gaussian distribution with fixed mean p = 0 and standard deviation o(q),
where o(q) is defined by linear interpolation through two control points. Normalized
within ((ag/a)min = —0.08, (as/a)max = 0.08).

e P(¢3—¢o | agla) — uniform distribution over the interval [(¢3—¢o)min = —7/6, (¢3—
¢O)max = 7'['/6)

e P(ag/a | q) — skew—normal distribution with shape «(q), location £(q), and scale w(q),
each specified by a three-point linear spline. Normalized within ((a4/a)min = —0.05, (a4/a)max = 0.14).

o P(ps— o | asfa) — symmetric generalized Gaussian distribution with fixed mean p =
0, and scale a(aq/a) and shape B(ag/a), both described by three-point linear splines.
Normalized within [(¢4—d0)min = —7/8, (¢4—P0)max = 7/8).

The limits gmax = 1, (¢m —@0)min = —7/2m, and (dm — Po)max = 7/2m are set by
their mathematical definition, whereas gmin, (@m/@)min, (@m/a@)max, are set by the observed
population limit; more specifically, maximum /minimum of data value 4 3 times of uncertainty.

The parameters were optimized by minimizing the sum of two Jensen—Shannon (JS)
divergences between the model and the galaxy sample from [22] convolved with its uncertainties.
The final JS divergence for m = 3 and m = 4 are JS,,—3 = 0.100 and JS,,—4 = 0.143,
respectively. The details of optimization is shown in Appendix B. Table 1 lists the best—fit
values that we use throughout this work.

Figure 3 compares the observed distributions in the [22] catalog (left panels), the best-fit
model predictions (center), and their residuals (right) for both m = 3 and m = 4 multipoles
in four axis-ratio slices. The general agreement between the observed and best-fit model

Table 1. Best—fit hyperparameters of the hierarchical prior. The total number of free parameters to
be optimized are 37.

Group Symbol Value(s)
0y —2.491
P(q) & 0.910
Wy 0.175
o3 (0.482, 0.871)

o(q) spline (m=3)

0.540, 0.139, 0.068)

0.0045, 0.0131, 0.0229)
1.929, 1.175, 1.601)

y,4

595,4
/By,4

B(asfa) spline

oy.3 (0.0075, 0.0043)
. . Oaa (0.522, 0.614, 0.838)
a(q) spline (m=4) 4 (0.872, —1.054, —0.224)
L Y (0.437, 0.678, 0.851)
¢(g) spline (m=4) ' (0.0485, 0.0124, 0.0008)
. L wea (0.533, 0.628, 0.942)
w(g) spline (m=4) = " (0.0195, 0.0110, 0.0038)
/
o(aya) spline O Eo.0037, 0.0123, 0.0340)
(
(




prediction demonstrates that the chosen functional forms are flexible enough to capture the
empirical population while retaining analytic simplicity.

Algorithm 1 and Figure 4 demonstrate the sampling procedure. In our inference pipeline
we do not draw these parameters directly; instead the joint prior of Eq. (3.2) is encoded as
an additive log-likelihood evaluated for each MCMC proposal.

Algorithm 1 Draw a sample (as/a, ¢3— ¢, as/a, ¢4 — ¢o, q). The same factorization is
implemented as a custom prior-likelihood term to be fed into LENSTRONOMY and EMCEE
pipeline. The sampling steps below show the conceptual sampling equivalent.

1. Sample ¢ ~ SkewNormal(ag, &, wq)-

2. a. Compute o(g) by linear interpolation of the two control points (o3, 0y 3)-
b. Sample as/a ~ N(0,0(q)?).
c. Sample ¢3—pg ~U(—7/6,7/6).

3. a. Interpolate (o, &, w)(q) from their control points to obtain the shape of P(a4/alq).
b. Sample aq/a ~ SkewNormal(a(q),£(q),w(q)).
c. Interpolate a(ay/a) and B(asfa) from their control points.
d. Sample ¢4 — ¢p from the symmetric generalized Gaussian G(u = 0, «(ag/a), f(as/a)) on

[—7/8,7/8).
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Figure 3. Observed versus modeled probability distributions for (as/a, p3—dg, ¢) (top three rows),
(asfa, pa—do, q) (following three rows), and P(q) (bottom). Each triplet of heatmaps shows, from
top to bottom, the observed kernel-density estimate (histogram of data points convolved with their
uncertainties), the hierarchical model prediction using the best-fit parameters of Table 1, and their
difference. Four columns correspond to non-overlapping slices in ¢; they match with the four ranges
shown in P(q) with dashed line. Axis ticks are shared between heat maps and thus omitted from the
panels to reduce visual clutter except one. Coordinate axes are consistent within each set of panels
for m = 3 and m = 4.
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4 Mock—data construction

Our goal is to provide a controlled, HST—quality reference case in which the impact of
multipole priors and extended—arc information can be quantified unambiguously. Therefore,
we fix the macro model parameters and source morphology based on a single, well-studied
system with clear extended arcs: WGD 2038-4008 [16, 57]. This system has a source redshift of
Zsource = 0.777, 2lens = 0.230 [57, 58]. We fitted the original HST F814W image of this system
with a model without multipoles—EPL-+shear for lens mass, Sérsic for lens light and source
light profiles, and point-like quasars—to set the realistic model parameters. This ensures
that in addition to realistic signal to noise, our mock lenses will have typical properties of
gravitational lenses including potential contamination from the deflector light and realistic
extended quasar host galaxy brightness. We add realistic mass multipole parameters on the
fitted model based on two multipole scenarios. Investigation for multiple mock/real lens
systems is left to future work. Below we summarize the ingredients.

4.1 Parameter setting

Multipole scenarios We base our parameter choices within a reasonable prior shown in
Section 3. We test two scenarios for the multipoles of the main deflector as described in
Table 2. One scenario, ‘Mild m = 4’ has agq/a = 0.01. The other scenario, ‘Strong m = 4’
has agfa = 0.03. In both cases, we align the m = 4 multipole with EPL; ¢4—¢¢ = 0 (rad),
while keeping the prior broad. For m = 3 multipoles, we set them to be as/a = 0.01 and
¢3—¢po = 0.2 (rad) for both cases.

These multipole scenarios are selected as they are representative of realistic combinations
of parameter values seen in galaxy isophotes, and they span a possible range of perturbations
to the lens models.

Observation scenarios For each multipole scenario described above, we made two simulated
observations of the lens system; one in which only point sources were imaged, and the other
with point sources and extended arcs. The mock observation data was generated using
LENSTRONOMY. Figure 5 gives an example of two of our mock data sets.

Other parameters The parameter values and priors for other mass and light components
are summarized in Tables 5 and 6. Note that, for the point—sources only data sets the host
light is not included.

Multipole Scenario  Parameter Name  Simulation Truth  Fitting Prior

asfa 0.01
. _ ¢3—do 0.2 (rad) Jointly sampled
Mild m = 4 asfa 0.01 (see Section 3)
$1—¢o 0 (rad)
asfa 0.01
B b3— o 0.2 (rad) Jointly sampled
Strong m =4 asfa 0.03 (see Section 3)
P1—o 0 (rad)

Table 2. m=3,4 multipole parameters with two different scenarios.

— 11 —



4.2 Data quality

We create mock observations based on Hubble Space Telescope’s WFC3 imaging data from
programs GO-15320 and GO-15652 (PI: Treu, T.). Those programs carried out a uniform
multi-band imaging campaign of 31 quadruply imaged quasars and [16] provided the optimal
parameter for modeling our mock lens system, WGD 2038-4008. We base our simulations
on the observations with F814W which had the best combination of sensitivity and clear
extended arcs.

The exposure time is set to be 920 seconds, the pixel size is set to be 0.04 arcseconds,
and the background noise level is set to be 0.006 photons/second for each pixel. The point
spread function (PSF) is modeled as a two-dimensional Gaussian with a known full width
at half maximum (FWHM) of 0/10. This choice is a simplification; in real observations, the
PSF is typically more complex and must be inferred from the data. We opt not to model a
complex PSF or reconstruct it from the data to avoid PSF-related complications. Section 5
now treats these mocks as data and applies the modeling framework of Section 2.

5 Inference framework

5.1 Likelihood and priors

We infer the lens model parameters from the mock data following the standard LENSTRONOMY
fitting procedure [38, 39| together with two custom prior likelihoods. The total log-likelihood

point sources point sources & arcs 0.5

log,  flux

-2.0

Figure 5. Comparison of simulations of HST-quality quadruply imaged quasars with point sources
only (left) and point sources and extended arcs (right). The four quasar images are marked as A,
B, C, and D. Note that the ‘point sources only’ case uses limited information (point source positions)
only, whereas the ‘point sources and extended arcs’ case corresponds to an analysis using complete
information with extended arcs. This way we can measure how much improvement comes when the
full observation with extended arcs is modeled, compared to using images positions only. The change
from one multipole scenario to another is quite subtle (e.g. slight shift of point sources and arcs), and
thus not compared here.
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of the inference process is given as

InLiot = InLimg + InLps + InL,
—~—
ellipticity prior, Appendix E

+ In Pmodel (a3/a> ¢3 _¢07 a4/a7 d)4 _¢0> Q)

population prior, Section 3

where:

® Ling is the pixel-based image likelihood. Note that the point-source fluzres are not
compared to the observations as done by other studies of lensed quasars using HST |[e.g.
18, 57]; quasar image flux in HST optical broad-band imaging is dominated by emission
from the quasar accretion disk and thus sensitive to stellar microlensing in reality.

e L, quantifies how well the multiple lensed quasar images can be mapped back to a
common point in the source plane under the current lens model.

e L. is an ellipticity prior that makes uniform prior on (g, ¢p). See Appendix E for details.

® Podel is the joint prior for multipole parameters and ¢ described in Section 3.

Other parameters have broad uniform priors (see Tables 5 and 6). The true PSF is assumed
to be known, and thus not optimized.
5.2 Sampling strategy
The posterior landscape is explored in two stages:
(i) Particle-swarm optimization (PSO), 100 particles, 200 iterations, identifies a high-likelihood

region.

(ii) Ensemble MCMC (the emcee sampler) with a walker-to-parameter ratio of 8:1, 40 000
steps each. The first 30 % of the chain is discarded as burn—in; out the remaining chain,
~ 500000 samples are used for all posterior plots and flux-ratio statistics.

5.3 Derived quantities
For each retained sample we evaluate the signed magnifications
~ 1

WO = T~ 72 (5:2)

where xk = % {‘327% + (32715}, v = % [g% — %}’ and v = %g}y for the projected gravitational

potential 1. The three model-predicted flux ratios were calculated as B/A = |up/pal, C/A =
luc/pal, D/A = |pup/pal.

For each multipole scenario, we define the with-arcs precision improvement factor, F(,),
as the ratio between the 68% confidence interval uncertainties of a variable p for ‘point source
only’ case, Ap|point sources, and that of ‘point sources and arcs’ case, Ap|point sources & arcs-

Ap | point sources
]:P

(5.3)

Ap|point sources & arcs
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6 Results

The posterior comparison of point source only (red) and point sources + arcs (blue) are
shown in Figures 6 and 7 for the multipole parameters and in Figure 8 for the flux ratios.
The improvement in parameter precision is summarized in Tables 3 and 4.

The axis ratio ¢ is significantly better constrained when extended arcs are included,
with the precision improvement factor F, exceeding 10 in both multipole scenarios. This
more narrowly defined ¢ distribution in turn enables sharper joint priors on the multipole
parameters.

The amplitudes of the multipoles, as/a and ay/a, are largely unconstrained by point source
positions alone; their posteriors remain broad and prior-dominated. When arcs are added,
however, these parameters become well-constrained, with precision improvement factors of
Fasja = Fagja = 3.5.

The multipole angles ¢3—@¢ and ¢p4—p¢ also show clear improvement in constraint when
arcs are included. In the mild m = 4 case, the inclusion of arcs improves the constraint on
pa—o by factors of Fy, 4, ~ Fp,—¢, ~ 7.5, and in the strong m = 4 case, the factors increase
to ~ 12. This indicates that arc information becomes especially powerful when the underlying
multipole amplitude is more pronounced.

Lastly, the inclusion of arcs also greatly sharpens the predicted flux ratios. On average,
the uncertainties on B/A, C/A, and D/A are reduced by a factor of approximately 6,
regardless of the underlying multipole scenario. This substantial improvement in predicted
flux precision underscores the benefit of arc information for studies relying on flux ratio
anomalies.

In summary, when multipole amplitudes are at the typical level observed in the isophotes
of massive elliptical galaxies, extended arcs are essential for deriving accurate and precise
constraints on the smooth lens model. Point sources alone are insufficient for this task, but
their combination with arcs enables strong recovery of both multipole parameters and flux
ratios. This improvement comes in part from constraining the axis ratio q.

7 Discussion and conclusion

Extended arcs are essential to constrain multipole parameters. Adding the host—galaxy arcs
improves the precision of the model flux ratios by an order of magnitude and reveals the
multipole amplitude and orientation.

This work provides a reasonable prior on multipole parameters for the macro model,
which can increase the robustness of strong lens modeling by incorporating well-motivated
complexity. Future strong lens analyses—including time-delay measurements and substructure
studies—can build on this framework. In particular, for studies that use flux ratio anomalies
to infer substructures [12-14, 59|, our results suggest that incorporating extended arcs can
improve both the precision and robustness of the analysis, while giving meaningful constraints
on multipole parameters.

We adopted the circular multipole convention to remain consistent with HO6, but we
regard the elliptical convention as the preferred choice for future work because it better reflects
realistic galaxy shapes as discussed in Section 2.1.2 [41, 42]. Circular and elliptical multipoles
coincide when ¢ = 1, and deviate only mildly when either g~ 1 or the multipole amplitudes
are small (|a/a] < 1). In our sample, the majority of systems satisfy |a,,/a| < 0.02 (98.5%
for m = 3, 87.6% for m = 4, 86.7% together), while noticeably high values of a4/a appear in
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Multipole Parameters asfa P3— g asla P4—Po q
Mild m =4
Truth 0.010 0.200 0.010 0.000 0.580

Point sources
Point sources & arcs
With-arcs precision

0.005
oot
0.009 29901

+0.316
0214083
0.2147 049

+0.011
001783
0.01225 902

0.214
Con bl
—0.034 55 033

0.086
075070 09
0.588 2007

. 3.6 7.5 4.6 7.6 11.6
improvement factor

Strong m =4

Truth 0.010 0.200 0.030 0.000 0.580

Point sources

Point sources & arcs
With-arcs precision
improvement factor

+0.001
0.013Z5 001

3.1

0.005
0.000 00

+0.033
017675433

+0.322
0.027Z0 5375

11.2

0.008
00027 g0

3.5

+0.020
—0.022Z5 019

12.6

0.254
—0.0171935¢

10.009
0.58410 008

12.2

0.101
0.786017)

Table 3. Comparison of truth values, inferred parameters, and precision improvements of multipole
parameters for the “Mild m = 4”7 and “Strong m = 4” scenarios. Each row shows the true value,
the inferred median and 68% confidence intervals for the point sources only and point sources & arcs
cases, and the resulting precision improvement factor from adding arcs. This factor is defined as the
ratio of the confidence interval width in the point-source-only case to that in the combined case.

Flux Ratios B/A C/A D/A
Mild m =4
Truth 1.234 0.828 0.419

Point sources

Point sources & arcs

With-arcs precision
improvement factor

+0.060
o
122624 014

4.1

0.100
1.06115190

+0.013
0.826 0013

9.5

0.046

0458 g

0.417Z5 006
7.7

Average improvement factor: 6.7

Strong m =4

Truth

Point sources

Point sources & arcs

With-arcs precision
improvement factor

1.235

+0.055
PG

2.997

0.751

+0.090
111875755

9.045

+0.013
0.745" ) 012

0.389
0.037
ket
0-397 20 006

6.817

Average improvement factor: 5.7

Table 4. Same as Table 3 but of flux ratios. The average improvement factor (gray cells) summarizes
the relative gain in precision for the flux ratio predictions.
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‘Mild m = 4’ Inference Result

.......... truth
—— point sources
—— point sources & arcs

¢4 — Po

/.(\\% N (\\% Q'b Q% \/'Q

\ N
a4/a ¢4 - ¢0 q

Figure 6. Corner plot of the joint posterior for the multipole parameters in the ‘Mild m = 4’
mock lens. Red contours/histograms correspond to the point-source—only fit, while blue show the
fit that also uses the extended arcs. Shaded regions (light to dark) enclose the 68% and 95%
highest-posterior-density levels. Black dashed lines indicate the truth values. Numerical summaries
are given in Table 3.
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‘Strong m = 4’ Inference Result

.......... truth

—— point sources

—— point sources & arcs

¢4 — Po

¢1— o q

as/a

Figure 7. Same as Figure 6 but for ‘Strong m = 4’ mock lens.

highly elliptical lenses. Consequently, the circular multipole prior presented here may serve as
a temporary substitute for an elliptical multipole prior, particularly systems with ¢~ 1, until
future optical surveys measured in the elliptical multipole convention enable the construction
of a dedicated prior.

An additional implication is about the issue of shear bias. It has been shown that the
external shear fitted to strong lensing systems often compensates for missing m = 4 multipole
terms rather than representing true cosmic shear [29]7. Including m = 4 multipoles in the
lens model has been proposed as one solution to the lack of correlation between external shear

"The truncation of the lens mass map has also been noted as a factor influencing shear measurements; see
[60].
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‘Mild m = 4’ Inference Result ‘Strong m = 4’ Inference Result
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Figure 8. Same as Figures 6 and 7 but for flux ratios. Numerical summaries are given in Table 4.

measured in strong lens systems and cosmic shear measured in weak lensing. Our findings
imply that multipole terms can be accurately constrained when arcs and a joint prior on
multipoles are included. This approach could help eliminate the shear bias in future studies.

There are, however, limitations and opportunities for further development. This proof-
of-concept study is based on a single lens geometry and assumes a Gaussian PSF. Several
future directions are clear: (i) applying the method to multiple mock lenses with different
image configurations and source morphologies, (ii) applying it to quadruply lensed quasars
with arcs observed with HST, (iii) incorporating a more complex source light model, and
(iv) combining the method with JWST mid-IR flux ratios in a joint macro + substructure
analysis. It is important to note that our current analysis has several simplifications and
does not include dark matter substructures in the mock observations or in the modeling.
Therefore, although we observe significant improvement in constraining the lens model using
imaging data and arcs, this does not guarantee the same level of improvement when dark
matter substructures are present.

A companion paper [20] extends this work by incorporating full realizations of dark
matter substructures and modeling multipoles of m = 3,4 within a comprehensive lensing
framework, while the joint multipole prior proposed in this study was not used. Their
inference is performed directly on imaging arcs using shapelet-based source reconstructions
with substructure lensing together. However, the use of highly flexible source models and
inclusion of dark matter substructure introduces significant degeneracies between lens and
source parameters. As a result, the posterior constraints on the multipole parameters are
noticeably broader. This suggests that flexible source and inclusion of dark matter substructures
can dilute the constraining power of arcs on the lens potential unless additional priors or
constraints are imposed. In contrast, our controlled mock setup—with a simple source and
clean arc morphology—highlights the maximum potential gain from arcs in constraining
multipoles under idealized conditions.

In summary, in this work, the population prior for (as/a, ¢3— o, asfa, p4s— do, q) based
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on optical observations is designed and implemented into the strong lens system. When
combined with extended arcs, yields an order-of-magnitude improvement in the precision of
smooth-model multipole parameters and flux ratios. This approach may also contribute to
future strong lensing studies and enable separation of line-of-sight (cosmic) external shear
from apparent “shear” that is actually produced by higher-order multipoles in the deflector.
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A Comparison of multipole conventions

In this paper, the multipole radial deviation of the isophotal or isodensity contour from the
best-fit ellipse was expressed as a single cosine function with a multipole phase ¢,, as follows.

O = G, cos (Mm(d — dm)) (A.1)

-+« (am, ¢m) convention

Here, r and ¢ are the typical radial and angular coordinates, r = /22 + 42 and ¢ =
arctan2(y,z). The same equations can be converted into a different convention following
[22, 61] using the sum of cosine and sine functions as follows®.

O0r = am, cos (m(p — ¢o)) + Bmsin (m(p — ¢o)) (A.2)

-+ (am, Bm) convention

Note that when the multipole and the ellipse are aligned, ¢,, — ¢g = 0 in the first convention,
By = 0 in the second convention, and a,, = .

The conversion from (G, @) t0 (m, Bm ) is given as follows, from the angle sum formula
for cosine.

Oy = Ay, cOS(M( Py, — ¢0)), B = G sin(m(dp — ¢o)) (A.3)
o (Amy Om) = (Qm, Bm)

The other way of conversion from (&, Bm) t0 (@m, ¢m) is not unique. We choose to do
it by the following.

A = sign (@) \/ @m2 + B2, dm = ¢o + %arctan(ﬁm/am) (A.4)
ce (Olm, /Bm) — (ama ¢m)

This way of conversion lets a,, keeps the sign of «a,, and its significance; e.g. a4 > 0 means
disky and a4 < 0 means boxy. If a different conversion rule is used, this property is not
guaranteed. For example, assume the following conversion: al, = /a2 + Bm? and S
do + %arctanQ(ﬂm, am). In this case, a, is always non-negative and the ‘boxy/diskyness’ of
m =4 multipole depends on the range of the misalignment ¢4 — ¢g, which is more tricky to
recognize.

B Optimization Details

The loss function to be minimized in the optimization process is defined as the sum of two
JS divergences, one for m = 3 and the other for m = 4:

8The equations in [22] do not have the angle of the ellipse ¢g because their coordinate system is aligned
with the elliptical profile; i.e. ¢9 = 0 by construction. Here we included it for generality of the equation. Also,
they use (@m, bm) instead of (am, Bm); we are using the latter to distinguish the conventions.
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Ljs = JSy=3 + JSm=4
= JS[Pos(az/a, p3—d0,q) || Pmod (az/a, o3 —o,q)] + (B.1)
JS[PObS(a4/CL, $a— o, Q) ” Pmod(a4/a7 14— o, Q)] .

The optimization process optimized all variables shown in Table 1 using the ADAM optimizer
in PyTorch, where Py is a kernel-density estimate of the sample from H06 [22]. The model
likelihood Pp,q is evaluated by Eq. (3.2). Each galaxy is represented by a 3-D Gaussian
centered at the measured value, with widths given by its quoted uncertainties. For angular
variables (¢3— g, ¢4— o), we replicate the kernel across the periodic boundaries®.

JS divergence is defined as

1 1 1
JS[P||Q] = iKL[PHM] + §KL[QHM], where M = §(P +Q), (B.2)
and the Kullback—Leibler divergence is given by
P
KL(P||Q) = /P(x) log QEm; dzy dos - - day. (B.3)
T

The JS divergence provides a symmetric and smooth measure of dissimilarity between probability
distributions and is widely used in the optimization of probabilistic models. JS divergence has
the lower bound of 0 when P(x) and Q(z) are identical and the upper bound of log(2) ~ 0.69
when P(z) and Q(x) are completely disjoint. After optimization procedure'?, it reaches to
JS;=3 = 0.11 and JS,,—4 = 0.16.

C Generation of the observational probability densities

The [22] catalog provides (v, Bm, q) for m = 3 and m = 4 together with 1o measurement
uncertainties (Acu,, ABm, Aq). This is converted to (a,/a, om— oo, q) using the conversion
shown in Appendix A. The uncertainties (Aapy/a, Apm—do, Aq) are calculated using linear
error analysis, but there were data points showing imaginary uncertainties from linear analysis
and their uncertainties were calculated again quadratically. There were 7 out of 847 data
points that still showed imaginary uncertainties even then, which were removed from this
analysis.

To compare our hierarchical model with the data, we convert this discrete sample into two
continuous and normalized probability densities Pyps(as/a, d3—do, q) and Pops(as/a, da—do, q).
Our procedure is summarized below.

1. Gaussian kernel. Each galaxy ¢ is represented by a 3-D Gaussian
Gi = N((amfa)i, Alamfa)i®) N((6m—60)i, Aldm—00)i*) Mai, Agi®).

2. Angular wrapping. Because the angular variables are periodic, ¢,, —¢g € (—%, %),
a kernel whose width extends beyond the boundary must be replicated. We compute n =
[1(@m—00)i £ 3A(dm—e0)il / (m/2m)] and create shifted copies ((am/a)i’, (dm—ao)i' ai’) =
(£(am/a)i, (pm—a0)i £ 2k-7/2m, ¢;) for every k = —n, ..., n. Odd—k shifts flip the sign of
am/a because the m-th multipole is antisymmetric under a half-period rotation.

9For ¢3—¢o the fundamental domain is (—7/6,7/6), for ¢pa—qo it is (—m/8,7/8). Any kernel that crosses
a boundary is mirrored with the appropriate parity in as/a or as/a; see Appendix C.

195000 epochs with adaptive learning rate (ReduceLROnPlateau) starting with 0.01 with patience 50 and
factor 0.5
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3. Weighting. Each replica is assigned the analytical weight wy = CDF/\/(% + 2k%) —
CDF N(—ﬁ + Qk%) This ensures that the integral of the replicated kernels equals unity.

All kernels share the same weight in ¢,,, —¢g and q.

4. Normalization. The sum Pyp,s = Y, >, wir, Gii is evaluated on a regular (100)? grid and
renormalised so that [ Pops = 1.

D Modeling details

Table 5 and 6 provide the lens and light parameters other than the multipole parameters used

to create the mock data.

Parameter

Profile True Value Prior Note
Name
O 1737 U(0,10)
5 2.50 U(1.5,2.5)
. Tenter 07043 U(-10,10)
Elliptical — 07002 U(-10, 10)
Power Law . 0.07
1 —VU. .
(EPL) e 095 See Appendix E
q 0.58 Converted from (e1,e2)  (a)
%o —0.93 (—53°)  Converted from (ej,e2)  (b)
" 0.04 U(-0.5,0.5)
o 0.10 U(—0.5,0.5)

External Shear Vext 0.10 Converted from (v1,72)  (c)
Pext 0.60 (34°) Converted from (y1,72) (d)
asfa

m = 3 Elliptical ¢35 — ¢g See Table 2

Multipole Tcenter 07043 Jointly sampled with
Ycenter 0”002 EPL’S (mcentera ycenter)
asfa

m = 4 Elliptical b4 See Table 2

Multipole Tcenter 07043 Jointly sampled with
Ycenter 07002 EPL’s ($center; ycenter)

Table 5. The true values and priors of the lens mass parameters used for simulation and fitting of
the lensed quasar system.

(a) ¢ = 156, ¢ = Va2 +ex?. (b) ¢ = jarctan2(ez,er). (¢) Yext = V712 + 722 () Pexe =

L arctan2(vy2, 71).

E Ellipticity parameterization and prior

The multipole prior P(agfa, ¢3— ¢o, ag/a, ¢s—do, q) discussed in Section 3 provides a
skew-normal distribution as the prior for ¢, and this is implemented for the prior of (e1, e3),
considering their relationship with ¢, which is ¢ = }—jri, ¢ = +/e1? + eg2. However, this is not
enough because the parameterization of (e1, es) itself carries a strong bias toward small ¢ and
thus affect the multipole prior too, if not adjusted. In the following content, we explain this
problem and an additional prior to relieve this bias.
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Parameter

Kind True Value Prior Note
Name
Tsource 0718 Not directly sampled
Quasar Ysource —0710 Not directly sampled (a)
1. 40 Not directly sampled
Rsersic 0’37 U(0.00I, 10)
Nsersic 1.0 U(05, 5)
Elliptical Sérsic Tsource 0718 Jointly sampled with
(SOUI“CG Light’ Ysource —0710 Quasar’s (l'sourcea ysource)
when arcs exist) el 0.37 U(-0.5,0.5)
€9 0.13 U(-0.5,0.5)
Gsource 0.43 Converted from (e, e2) (b)
Dsource 0.17 (9.7°) Converted from (e, e3) (c)
I, 12 Not directly sampled
Resersic 3.3 U(OOOI, 10)
Nsersic 3.9 U(05, 5)
/
Elliptical Sersic ~ lens 0:03 U(-10,10)
(Lens Light) Yrens 0-01 U(-10,10)
el —0.05 U(-0.5,0.5)
es ~0.18 U(—0.5,0.5)
()t 0.69 Converted from (e, e2) (b)
Plens —0.92 (—=52°)  Converted from (eq, e2) (c)

Table 6. The true values and priors of the source and lens light parameters used for simulation and
fitting of the lensed quasar system.
(a) The lensed positions are sampled first and their unlensed position was evaluated. (b) ¢ =

ver?+el? (¢) ¢ = %arctan2(eg, e1)

11cr €=

Definitions. The axis ratio g=b/a (0 < ¢ < 1) and major-axis position angle ¢ € [0, ) are
mapped to the Cartesian ellipticity components!!
l—gq

c = —, el = ccos29, es = csin2¢. E.1
174 1 ¢ 2 ¢ (E.1)

Sampling in the (e1, e2) avoids the discontinuity at =0 =7 and helps a continuous angular
sampling, but introduces a non-uniform Jacobian with respect to (g, ¢):

Oevea)) _ |5 | _ _d0-0) __ .,
o (Gag) - 5 06| = g = 0 (£.2)

A flat prior in (e1, e2) therefore induces a strong preference for smaller ellipticities (¢ < 0.5)
and cannot reach g <3 — 2v/2 ~ 0.17 with any angle and 3 — 21/2 < ¢<1/3 for some angles,
if the usual box |e;|, |e2| < 0.5 is enforced. Figure 9 (a, c, e) illustrates the bias.

Desired prior. For our lens population we wish to keep P(q) ox const and P(¢) o const
before giving the multipole-related prior. Combining Eq. (E.2) with P(q, ¢) = P(e1,e2) |det J|

11 This is the LENSTRONOMY convention.
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Figure 9. Top: Priors in the (eq, e2) space. (a) Uniform in the square |e1], |ea] < 0.5. (b) Weighted
in the unit disk (¢ < 1) by 1/c(1+¢)2

Middle: Analytic mapping to (g,¢). (c) Flat square in (ej,e2) maps to a biased (g¢,¢) prior,
increasing sharply as ¢ — 0, with a hard cutoff at ¢ > 3—2v/2. The white dash-dot line traces the

image of the square boundary from panel (a). (d) Applying the weight m flattens the prior over

(¢: 9)-

Bottom: Monte Carlo validation. (e) Sampling from the square reproduces (c). (f) Disk sampling
with weight recovers uniformity as in (d). The granular structure at high ¢ results partly from limited
number of sampling (N = 5x10%). Additionally, near ¢ ~ 1 (i.e., e;,e2 ~ 0), numerical precision
limits in (e, e2) introduce artifacts in the transformed (g, ¢) space.
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yields
(1+4q)° 1
P(ey, = E.3
(e, €2) o 4(1 —q) c(1+c)? (E-3)
The prior applies the entire unit disk e;? + ep? < 1, allowing axis ratios down to ¢ = 0. We
implement this as an additive custom log-prior in the LENSTRONOMY likelihood:

L, = —Infc(1+c)?] if €12 + ex? < 1, (E.4)

Inf, = —o0 otherwise. (E.5)

Figure 9 (b, d, f) illustrates the sampling result with the desired prior.
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