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ABSTRACT
Strong gravitational lensing provides a purely gravitational means to infer properties of dark matter halos and thereby constrain
the particle nature of dark matter. Strong lenses sometimes appear as four lensed images of a background quasar accompanied by
spatially-resolved emission from the quasar host galaxy encircling the main deflector (lensed arcs). We present methodology to
simultaneously reconstruct lensed arcs and relative image magnifications (flux ratios) in the presence of full populations of dark
matter subhalos and line-of-sight halos. To this end, we develop a new approach for multi-plane ray tracing that accelerates lens
mass and source light reconstruction by factors of ∼ 100 − 1000. Using simulated data with a cold dark matter (CDM) ground
truth, we show that simultaneous reconstruction of lensed arcs and flux ratios isolates small-scale perturbations to flux ratios by
dark matter substructure from uncertainties associated with the main deflector mass profile on larger angular scales. Relative to
analyses that use only image positions and flux ratios to constrain the lens model, incorporating arcs strengthens likelihood ratios
penalizing warm dark matter (WDM) with a characteristic suppression scale 𝑚hm/𝑀⊙ in the range

[
107 − 107.5] , [107.5 − 108] ,[

108 − 108.5] , [108.5 − 109] by factors of 1.3, 2.5, 5.6, and 13.1, respectively, and the 95% exclusion limit improves by 0.5
dex in log10 𝑚hm. The enhanced sensitivity to low-mass halos enabled by these methods pushes the observational frontier of
substructure lensing to the threshold of galaxy formation, enabling stringent tests of any theory that alters the properties of dark
matter halos.
Key words: cosmology: dark matter – gravitational lensing: strong

1 INTRODUCTION

The abundance and internal structure of dark matter halos depends
on the particle nature of dark matter (Buckley & Peter 2018). As
such, characterizing the properties of dark matter substructure, the
low-mass (< 1010𝑀⊙) halos that surround galaxies and permeate the
cosmos, enables tests of fundamental dark matter physics. On sub-
galactic scales, differences between the concordance cosmological
model of cold dark matter (CDM) diverge from the predictions of
other theories. For example, if the dark matter has a sufficiently large
(≳ 1kpc) free-streaming length, the abundance and central density of
dark matter halos become suppressed on scales comparable to that of
a low-mass galaxy, relative to CDM (Bond & Szalay 1983; Bode et al.
2001; Bose et al. 2016; Lovell 2020; Stücker et al. 2022). In this class
of theory, categorically referred to as warm dark matter (WDM), the
free-streaming scale depends on the formation mechanism and mass
of the dark matter particle (e.g. Schneider et al. 2012; Abazajian
& Kusenko 2019). Alternatively, theories with self-interacting dark
matter (SIDM) posit that the dark matter behave as CDM on cosmo-
logical scales, but experiences self-interactions inside high-density
regions, such as dark matter halos (Spergel & Steinhardt 2000; Tulin
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et al. 2013). In SIDM, halos initially form a central core, and even-
tually undergo a process referred to as core collapse that causes an
order-of-magnitude increase in their central density of halos (Balberg
et al. 2002; Gilman et al. 2021, 2023; Nadler et al. 2023b; Yang et al.
2023).

Characterizing the properties of substructure on small scales, be-
low 109𝑀⊙ , would have profound consequences for our understand-
ing of dark matter and cosmology. In the standard picture of cos-
mological structure formation, dark matter halos emerge from the
collapse of primordial density fluctuations. Halo mass scales below
109𝑀⊙ correspond to wave numbers 𝑘 > 10 Mpc−1, a relatively
unconstrained region of the primordial matter power spectrum that
could hide clues related to inflation, the early Universe and dark mat-
ter (Zentner & Bullock 2003; Bringmann et al. 2012; Van Tilburg
et al. 2018; Ando et al. 2022; Gilman et al. 2022; Esteban et al.
2023). Moreover, the predictions from dark matter theories such as
WDM and SIDM diverge more strongly from CDM predictions as
one moves to progressively smaller scales and lower halo masses.

In search of new physics, observational probes of dark matter
structure from dwarf galaxies (Kim et al. 2018; Correa 2021; Nadler
et al. 2021; Bechtol et al. 2022; Dekker et al. 2022; Akita & Ando
2023; Slone et al. 2023; Nadler et al. 2024), stellar streams (Bovy
et al. 2017; Banik et al. 2018; Bonaca et al. 2019; Banik et al. 2021),
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2 Gilman et al.

and gravitational lensing (Dalal & Kochanek 2002; Vegetti et al.
2014; Nierenberg et al. 2014; Hezaveh et al. 2016; Birrer et al. 2017;
Nierenberg et al. 2017; Vegetti et al. 2018; Gilman et al. 2020, 2021;
He et al. 2022; Sengül et al. 2022; Wagner-Carena et al. 2023; Dike
et al. 2023; Powell et al. 2023; Dhanasingham et al. 2023; Keeley
et al. 2023; Gilman et al. 2023; Mondino et al. 2023; Nightingale
et al. 2024) characterize the properties of substructure on sub-galactic
scales. If the dark matter has no coupling to the standard model
besides gravity, these cosmic probes of dark matter constitute the
only experiments with which to investigate its properties (see the
reviews by Drlica-Wagner et al. 2022; Bechtol et al. 2022).

Among the various observational probes that constrain dark matter
properties through studies of low-mass halos, strong gravitational
lensing provides the unique capability to characterize the properties
of substructure across cosmological distances, and across several
Gyr of cosmic time (see the recent review by Vegetti et al. (2023)).
Strong lensing refers to a phenomenon in which multiple highly-
magnified and distorted images of a background source appear due
to deflection of light around an intervening cosmic structure, such as a
galaxy. As lensing depends only on gravity, it circumvents systematic
uncertainties associated with using luminous matter as a tracer for the
underlying dark matter, and can characterize both the abundance and
internal structure of dark matter halos (Minor et al. 2021; Amorisco
et al. 2022; Gilman et al. 2022; Ballard et al. 2023). Through the
direct, purely gravitational detection of dark halos, strong lensing
can extend the reach of cosmic probes of dark matter structure to
scales below the threshold of galaxy formation ∼ 107𝑀⊙ .

Performing such a measurement requires exquisite data. Over the
last decade, radio interferometry (Koopmans et al. 2004; McKean
et al. 2007; Spingola et al. 2018), the Hubble Space Telescope (HST)
(Shajib et al. 2019; Nierenberg et al. 2017, 2020), the W.M. Keck
Observatory (Nierenberg et al. 2014), and the James Webb Space
Telescope (JWST) (Nierenberg et al. 2023) have observed a particu-
lar class of strong lens system in which a quasar becomes quadruply-
imaged. These systems are ideally suited to probe low-mass dark
matter structure because the relative magnifications among lensed
images (flux ratios) experience strong perturbation by low-mass ha-
los. The minimum mass sensitivity of the flux ratios is determined by
the size of the lensed background source (Dobler & Keeton 2006),
and recent JWST observations of the “warm dust region” around the
background quasar are expected to provide sensitivity to halos at
≲ 107𝑀⊙ .

As shown in Figure 1, a quadruply-imaged quasar can sometimes
appear alongside spatially-resolved lensed emission from the quasar
host galaxy, or lensed arcs. While the flux ratios provide sensitive
localized constraints on the lens model, the lensed arcs that encircle
the main deflector impose stringent constraints on the mass profile
across larger angular scales (e.g. Shajib et al. 2020; Powell et al.
2022). Incorporating constraints from the arcs leads to tighter con-
straints on the main deflector mass profile, improving the precision of
model-predicted flux ratios (Oh et al., in prep). However, due mainly
to computational limitations, no existing methodology enables the
self-consistent reconstruction of lensed arcs and quasar flux ratios in
the presence of potentially tens-of-thousands of dark matter halos.
As a result, substructure lensing analyses performed with quadruple-
image lenses use only the image positions and flux ratios to constrain
the lens model and the properties of dark matter substructure.

To make best use of existing and future flux ratio measurements,
in this paper we introduce a new lens modeling methodology to char-
acterize the properties of substructure in quadruply-imaged quasars
with extended lensed arcs. To reduce the computational costs as-
sociated with this analysis, we introduce a new approximation for

multi-plane ray tracing that accelerates lens mass and source light
reconstruction by factors of 100-1000, depending on the number
of halos in the lens model. We demonstrate the accuracy of this
methodology by performing end-to-end Bayesian inference on sim-
ulated datasets. As we will show, the joint reconstruction of lensed
arcs and flux ratios leverages complementary information from angu-
lar scales that span from the typical Einstein radius (∼ 1 arcsecond)
down to the milli-arcsecond scales probed by flux ratios. The meth-
ods we develop enable more robust constraints on the properties of
low-mass dark matter halos and the nature of dark matter.

This paper is organized as follows: In Section 2, we describe the
Bayesian inference problem of inferring substructure properties from
strong lens modeling. In Section 3, we detail the computational chal-
lenge that has precluded the joint modeling of lensed quasar flux
ratios and lensed arcs, and introduce a methodology for multi-plane
ray tracing that alleviates this computational burden. Section 4 dis-
cusses how we create simulated datasets to evaluate the performance
of the lens modeling techniques presented in Section 3 in the context
of constraining warm dark matter. Section 5 presents the results of ap-
plying the methodology to the simulated datasets, and quantifies the
improvement afforded by reconstructing lensed arcs simultaneously
with flux ratios relative to analyses that use only the image positions
and flux ratios to constrain substructure properties. We summarize
our finding and give concluding remarks in Section 6.

We perform lensing calculations using the open-source software
package lenstronomy1 (Birrer & Amara 2018; Birrer et al. 2021).
We generate the populations of dark matter substructure using the
open-source software pyHalo2 (Gilman et al. 2020). To perform the
forward modeling calculations that interface between lenstronomy
and pyHalo, we use the new open-source software samana3. We
assume a flat cosmology with Ωm = 0.32, 𝜎8 = 0.81 and 𝐻0 =

67.4 km s−1 Mpc−1 (Planck Collaboration et al. 2020).

2 DARK MATTER SUBSTRUCTURE INFERENCE

We begin in Section 2.1 by phrasing our objective as a Bayesian
inference problem in which we use image positions, flux ratios, and
imaging data to constrain a set of hyper-parameters that determine
the properties of dark matter substructure. In Section 2.2, we discuss
an Approximate Bayesian Computing method to compute the joint
likelihood function of lensed image positions, flux ratios, and the
imaging data.

2.1 The Bayesian inference problem

For a quadruply-imaged quasar with lensed arcs from the quasar
host galaxy, such as the example shown in Figure 1, the observables
include the relative positions of the four lensed quasar images 𝑶pos,
the three flux ratios 𝑶f , and the imaging data 𝑶img associated with
the lensed arcs. Given a set of hyper-parameters q that parameterize
a dark matter theory, our aim is to compute the posterior probability
distribution

𝑝 (𝒒 |𝑶) ∝ 𝜋 (q)
∏
𝑖

L (O𝑖 |q) (1)

where 𝑶 = (𝑶1,𝑶2, ....) represents the data from a sample of lenses,
𝜋 (q) represents the prior on q, and where L (O𝑖 |q) represents the

1 https://github.com/lenstronomy/lenstronomy
2 https://github.com/dangilman/pyHalo
3 https://github.com/dangilman/samana
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Lensed arcs and flux ratios 3

Figure 1. An HST image of J0405-3308, the type of strong lens system
we consider in this work. Four images of a background quasar (labeled A,
B, C, D) appear alongside a lensed arc that encircles the main deflector.
The methodology presented in this paper develops the formalism to self-
consistently reconstruct the lensed images, the relative magnifications, and
the lensed arc in the presence of dark matter subhalos and line-of-sight halos.
The Figure is adapted from Shajib et al. (2019).

likelihood function for a single lens with data O𝑖 ≡
(
𝑶pos,𝑶img,𝑶f

)
.

To connect the hyper-parameters q with 𝑶𝒊 , we must generate real-
izations, 𝒎sub, of dark matter substructure from the model specified
by q. Hereafter, a realization of substructure refers to the set of halo
masses, positions, and density profiles from which we can compute
a lensing deflection field. The likelihood follows from marginalizing
over many realizations

L (O𝑖 |q) =
∫

L (O𝑖 |𝒎sub,N) 𝑝 (𝒎sub |q) 𝑝 (N) 𝑑N𝑑𝒎sub. (2)

In the preceding equation, we have introduced a vector of nuisance
parameters, N, which include quantities that parameterize the main
deflector mass profile (hereafter the macromodel), the spatial ex-
tent and structure of the lensed background quasar, and the surface
brightness profile of the quasar host galaxy. The likelihood appear-
ing in the integrand is the product of an astrometric likelihood com-
puted with the lensed image positions L

(
𝑶pos |𝒎sub,N

)
, the imag-

ing data likelihood L
(
𝑶img |𝒎sub,N

)
, and the flux ratio likelihood

L (𝑶fr |𝒎sub,N).
We compute observables 𝑶𝒊 using the multi-plane lens equation

(Blandford & Narayan 1986)

𝜽K = 𝜽 − 1
𝐷s

𝐾−1∑︁
𝑛=1

𝐷ns𝜶n (𝐷n𝜽n)︸                         ︷︷                         ︸
𝜶eff (𝜽,𝒎sub ,N )

, (3)

which describes backwards ray propagation through lens planes in-
dexed by 𝑛. For later use, we have also introduced an effective multi-
plane deflection angle 𝜶eff (𝜽 ,𝒎sub,N). The quantity 𝜶𝒏 represents
the deflection field acting in each lens plane, 𝐷i represents an angular
diameter distance to the 𝑖th lens plane, and 𝐷ij represents an angular
diameter distance between planes 𝑖 and 𝑗 . The subscripts 𝑠 and 𝑑

denote the source plane and the lens plane of the main deflector. The
angle 𝜽 represents an angle on the sky as seen by an observer.

2.2 Efficient sampling methods and summary statistics

The high dimension of the data vector that includes image positions,
flux ratios, and imaging data, 𝑶𝒊 , poses challenges related to explor-
ing the vast parameter space of possible lens model configurations,
most of which do not fit all of the available data. Current analysis
methods deal with this issue by reducing the dimension of the data
vector before computing the likelihood function. For example, in an
analysis of eight quadruply-imaged quasars that used only the image
positions and flux ratios, Gilman et al. (2020) perform a non-linear
optimization of the macromodel such that each proposed lens model
satisfies the lens equation for the observed image positions in the
presence of substructure.

In this work, we use a similar strategy to focus computational
resources in regions of parameters space that contribute most signif-
icantly to the integral in Equation 2. The task at hand involves the
simultaneous reconstruction of the main deflector mass and source
light profile in the presence of a fixed population of dark matter
subhalos and line-of-sight halos, 𝒎sub. Using a particle swarm op-
timization (PSO) implemented in lenstronomy, we simultaneously
reconstruct the imaging data and background source while applying
a non-linear solver to a portion of the lens macromodel to satisfy
the lens equation for the quasar image positions. We guide the PSO
towards viable regions of parameters space by punishing poor fits
to the imaging data on a pixel-by-pixel basis in the image plane. In
Section 3.2, we describe an approximation for full multi-plane ray
tracing that we use to accelerate the PSO and any subsequent multi-
plane ray tracing calculations in the presence of the full population
of halos described by 𝒎sub.

The lens models that result from PSO optimizations provide better
fits to the imaging data than the overwhelming majority lens models
proposed only on the basis of matching the image positions. Once
we have constructed these lens models, we proceed to compute the
astrometric, flux ratio and imaging data likelihoods, as described in
the next three sub-sections.

2.2.1 The astrometric likelihood

As discussed in the previous section, during the particle swarm op-
timization we use the approach discussed by Birrer et al. (2015) and
apply a non-linear solver to a portion of the lens macromodel such
that the lens equation is automatically satisfied for each proposed
lens model. To handle observational measurement uncertainties in
the lensed quasar image positions, we add astrometric perturbations
to the image positions prior to performing the PSO, and later on we
will evaluate the flux ratios at these new perturbed coordinates. Thus,
at this stage we have accounted for L

(
𝑶pos |𝒎sub,N

)
by selecting

lens models that only reproduce the observed image positions to high
precision.

2.2.2 The flux ratio likelihood

Following existing methods (Gilman et al. 2019), we compute the flux
ratio likelihood using an Approximate Bayesian Computing (ABC)
rejection algorithm based on a summary statistic 𝑆 computed with
respect to the three observed flux ratios, 𝑶f , and 𝒇 (𝒎sub,N), the
model-predicted flux ratios

𝑆 (𝑶f , 𝒎sub,N) ≡

√√√ 3∑︁
𝑖=1

[
𝑂f (i) − 𝑓(i) (𝒎sub,N)

]2
. (4)

MNRAS 000, 1–26 (2024)
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Figure 2. An illustration of the angles and comoving distances that appear in the derivation of Equation 9. The figure depicts a backwards ray tracing operation
beginning from the observer on the left and ending at the source on the right. By performing one ray tracing calculation through the lens volume to the
source plane, we calculate 𝜶𝜷 , an effective deflection field from halos at 𝑧𝑑 < 𝑧 < 𝑧𝑠 and apply this deflection field across the main deflector lens plane.
This simplification preserves the essential properties of the multi-plane deflection field that results from Equation 3 while permitting lens mass and source
reconstruction with the same computational cost as a single-plane calculation.

We accept a realization and the corresponding parameters drawn
from 𝜋 (𝒒) if 𝑆 < 𝜖 , where 𝜖 represents a tolerance threshold. For
a given 𝜖 , the number of accepted samples between two regions of
parameter space approximates the relative likelihood between the
two regions of parameter space. ABC rejection algorithms converge
to exact (relative) likelihoods as 𝜖 → 0 while the number of samples
tends to infinity.

In our analysis, we generate ∼ 106 realizations per lens, and ac-
cept the top 𝑁accept = 3, 000 samples corresponding to the lowest
values of 𝑆. This results in values of 𝜖 that range between 0.01 and
0.1 among the (mock) lenses in our sample. As in previous work,
we handle observational measurement uncertainties by adding them
post-processing to the model-predicted flux ratios before computing
𝑆. The convergence tests performed for ABC rejection algorithms ap-
plied to image flux ratios by Gilman et al. (2020) motivate our choice
of the tolerance threshold on 𝜖 . Finally, we obtain a continuous ap-
proximation of the flux-ratio likelihood function, L (𝑶f |𝒎sub,N),
by applying a Gaussian kernel density estimator to the accepted sam-
ples drawn from the prior on q.

2.2.3 The imaging data likelihood

We compute the imaging data likelihood by applying an ABC re-
jection cut to a second summary statistic, 𝐿, which we define as the
likelihood of the imaging data 𝐿 ≡ L

(
𝑶img |𝒎sub,N

)
. In principle,

we could incorporate the imaging data likelihood directly through
importance sampling with weights equal to 𝐿, but this causes numer-
ical stability issues when the relative likelihood among the accepted
samples fluctuate by large factors of ∼ 𝑒5 due to the high dimension
of the data vector. We define the acceptance threshold on 𝐿 as the
value of 𝐿 that corresponds to the top 2nd percentile of the imag-
ing data likelihoods. This choice represents a compromise between

selecting models that best fit the imaging data, and accepting realiza-
tions that minimize the 𝑆 statistic computed with respect to the flux
ratios.

As we show in Section 5, the imaging data enables stronger con-
straints on substructure properties by imposing tighter constraints on
the mass profile of the main deflector than one obtains from analyz-
ing only the image positions and flux ratios. However, our method
of incorporating imaging data exposes the likelihood function to a
systematic bias associated with reconstruction of the source light
profile with substructure in the lens model. This bias manifests as a
systematic preference for lens models with less substructure. More-
over, in rare cases a dark matter halo imparts a strong perturbation
to the surface brightness of a lensed arc, a feature of the data that
the inference methodology we present in this work is not intended
to properly capture in the likelihood. For reasons we elaborate on
further in Appendix A, we conclude that the imaging data likelihood
will not give a reliable inference of substructure properties on its
own when calculated according to the methodology we present in
this work.

To mitigate the effects of systematics associated with the imaging
data and source reconstruction in the presence of substructure, we
demand that our posterior distribution have the property

lim
𝜖→∞

𝑝
(
q|𝑶img, 𝑶pos, 𝑶f

)
= 𝜋 (q) . (5)

That is, the posterior should equal the prior on q when computed only
using the imaging data (as 𝜖 → ∞ the flux ratio ratio likelihood term
becomes uninformative). We can arrange that our posterior meets
this requirement by introducing importance sampling weights, 𝑤,
given by

𝑤 (𝒎sub |q) =
1

L
(
𝑶img |q

) , (6)

which is simply the inverse of the likelihood of measuring Oimg for

MNRAS 000, 1–26 (2024)



Lensed arcs and flux ratios 5

a given population of substructure 𝒎sub generated from the model
q. This term effectively introduces a prior on the realizations 𝒎sub
based on the source reconstruction. As one can easily verify, apply-
ing these importance weights and performing a dark matter inference
without incorporating constraints from the flux ratios yields a poste-
rior distribution equal to 𝜋 (q).

3 ACCELERATING MULTI-PLANE LENS MODELING
WITH THE “DECOUPLED MULTI-PLANE”
FORMALISM

The approach outlined in the previous section presents a viable strat-
egy for performing a dark matter inference using image positions,
imaging data, and flux ratios to constrain the lens model. As dis-
cussed in the first paragraph of Section 2.2, a crucial step in the
inference method involves a non-linear optimization of the lens mass
and source light profile with respect to the imaging data through
a particle swarm optimization, and a simultaneous non-linear solver
applied to the lens macromodel such that the lens equation is satisfied
for the quasar image positions, for each realization. However, with
exact ray tracing methods, performing this calculation with thou-
sands of dark matter halos along the line of sight is computationally
intractable.

In this section, we begin in 3.1 by reviewing the methodology of
lens mass and source reconstruction using existing lens modeling
techniques, and explain how the computational intractability of lens
mass and source light reconstruction with line-of-sight halos derives
from the recursive nature of Equation 3. In Section 3.2, we intro-
duce a new approximation for mutli-plane lensing that preserves the
non-linear effects associated with Equation 3 while accelerating cal-
culations by factors of 100-1000. In Section 3.3, we show that this
formalism predicts effectively indistinguishable flux ratio likelihoods
from full multi-plane ray tracing.

3.1 Multi-plane lens modeling

To understand computational challenges posed by Equation 3, we will
walk through the step-by-step procedure of performing a lens mass
and source light reconstruction with substructure included along the
line of sight and in the main lens plane. Figure 2 depicts the back-
wards ray tracing procedure described by Equation 3, and will serve
as a useful guide for understanding the lens modeling procedures
discussed below, as well as the methods introduced in the next sub-
section.

For what follows, we assume that we have generated a realization
of substructure 𝒎sub from the dark matter model q. The masses, posi-
tions, and density profiles of the halos are held fixed for the remainder
of the calculation. Our objective is to simultaneously reconstruct the
mass distribution of the main deflector and the lensed background
source in the presence of the realization specified by 𝒎sub. The only
unknown parameters are those that describe the mass profile of the
main deflector, or more generally, the deflection associated with the
main deflector 𝜶macro. Our task is determine 𝜶macro subject to the
requirement that these deflection angles satisfy the lens equation for
the four image positions while simultaneously fitting the imaging
data. A standard lens modeling procedure proceeds as follows:

(i) Using Equation 3, we ray trace from the viewer to the pixel
location in the plane of the main deflector an angle 𝜽 . We record the
direction of a light ray as it intersects the main lens plane, 𝜽front =
𝜽 +𝜶front, and the comoving transverse distance of a light ray where

it hits the main lens plane 𝑻x (𝜽 ,𝜶front). Once the light ray reaches
the main lens plane, we compute the deflection angles produced by
main deflector subhalos, 𝜶sub (𝑻x). For a given realization of halos,
we only need to perform the calculation of 𝑻x and 𝜶sub (𝑻x) once
for a given angle 𝜽 because the ray tracing thus far does not depend
on the unknown 𝜶macro.

(ii) Propose a set of deflection angles 𝜶macro (𝑻x) produced by
the main deflector. This deflection field is unknown, and we will try
to optimize it subject to the constraints imposed by the data. Methods
discussed by (Gilman et al. 2019) generate proposals for 𝜶macro by
selecting lens models that satisfy the lens equation. In this work, we
use a particle swarm optimization to generate proposals for 𝜶macro
that satisfy the lens equation while also reproducing the lensed arcs.

(iii) Using the proposed 𝜶macro, we ray trace with Equation 3
until reaching the source plane. The deflection angles produced by
halos at 𝑧 > 𝑧d depend on 𝜶macro due to the recursive nature of
Equation 3, so this step involves thousands of function evaluations
per pixel in the lensed image.

(iv) We evaluate the surface brightness of the source light in the
souce plane, and then cast this light back to the image plane to produce
a lensed image. We then evaluate the likelihood of the imaging data.

(v) Repeat steps 𝑖𝑖 − 𝑖𝑣 until obtaining a maximum likelihood
estimation (or in some cases, a Markov Chain) for the parameters of
interest. During each iteration of Steps 𝑖𝑖−𝑖𝑣, we must re-evaluate the
deflections by halos at 𝑧 > 𝑧d because they are coupled to 𝜶macro.

Because step 𝑖𝑖𝑖 involve backwards ray tracing operations through
all lens planes between the main deflector and the source plane, the
computation time scales in proportion with the number of halos in
this region. For a typical configuration with a lens at 𝑧d = 0.5 and
a source at 𝑧s = 2.0, CDM predicts ∼ 1750 halos in the mass range
106 − 1010𝑀⊙ between the main deflector and source4. Thus, lens
mass and source light reconstruction with line-of-sight halos between
the main deflector and the source takes approximately 1750 times as
long as a single-plane reconstruction. The likelihood function in
Equation 2 dictates millions of such calculations per lens. Assum-
ing the particle swarm optimization takes ∼ 1 minute for a single
plane reconstruction, performing the lens modeling for 1,000,000
realizations of substructure would take ∼ 1, 750× 106 CPU minutes,
or ∼ 3, 000 CPU years per lens. In practical terms, to perform this
analysis on a sample of ten lenses with a computing allocation of
∼ 106 CPU hours, we require an increase in speed by a factor of at
least ∼ 250.

In summary, the computational difficulties that preclude the joint
reconstruction of image flux ratios and lensed arcs in substructure
lensing analyses stem from the recursive nature of the multi-plane
lens equation. In the next section, we introduce an approximation
for full multi-plane ray tracing that circumvents the repeated eval-
uation of step 𝑖𝑖𝑖 in the procedure described earlier in this section,
accelerating calculations by factors of up to ∼ 1, 000.

3.2 The decoupled multi-plane approximation for multi-plane
lensing

We begin with a reasonable estimate for the deflection field produced
by the main deflector, �̂�macro. As a reasonable estimate for this
deflection field, we choose one that satisfies the lens equation for
the image positions without substructure included in the lens model.

4 This number assumes we render halos in a volume shaped like a double
cone that opens towards the lens with an opening angle of six arcseconds,
and closes at the source position.
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Figure 3. The joint distribution of flux ratios for a simulated mock lens system
generated with exact multi-plane ray tracing (black) and with decoupled
multi-plane formalism (blue). The flux ratios of the mock lens system that
does not contain substructure are marked in green. The decoupled multi-plane
formalism predicts the same distribution of flux ratios as exact ray tracing.

Using Equation 3, we can perform Step 𝑖 − 𝑖𝑖𝑖 in the lens modeling
procedure described in the previous section, using our initial guess
for �̂�macro to ray-trace through the entire lens system to the source
plane. Inserting our choice of �̂�macro into Equation 3 for a given
realization of substructure, we ray-trace through the lens system and
reach an angular coordinate �̂� given by

�̂� (𝜽 ,𝒎sub, �̂�macro) = 𝜽 − 𝜶eff (𝜽 ,𝒎sub, �̂�macro) (7)

where 𝜶eff is the effective multi-plane deflection angle defined in
Equation 3, and where we have explicitly included our proposal for
the macromodel deflections �̂�macro in place of the nuisance param-
eters N.

Using �̂� we define a deflection field associated with line-of-sight
halos behind the main deflector, 𝜶𝜷 , as illustrated by the blue line in
Figure 2. This deflection field is a function of the following quantities:
First, 𝑻x represents the comoving position where a light ray strikes
the main lens plane; second, an angle 𝜽front, which is the observed
angle on the sky 𝜽 plus the cumulative deflections from foreground
halos; third, 𝜶sub, the deflection field associated with main deflector
subhalos; and fourth, the coordinate on the source plane �̂� we com-
pute with Equation 3 and �̂�macro. Expressing 𝜶𝜷 in terms of these
quantities gives

𝜶𝜷 =
1
𝑇ds

𝑻x − 𝑇s
𝑇ds

�̂� + 𝜽front − 𝜶sub − �̂�macro. (8)

The approximation we make is to apply the deflection field 𝜶𝜷 across
the main lens plane for any subsequent ray tracing operation for a
given population of dark matter halos. This results in a lens equation
for a coordinate on the source plane 𝜷

𝜷 = �̂� + 𝑇ds
𝑇s

(�̂�macro − 𝜶macro) . (9)

Note that we must still evaluate the main deflector deflection angles

𝜶macro at the positions𝑻x defined in step 𝑖 in the previous subsection.
This version of the multi-plane lens equation resembles a single plane
lens equation that is linear in the macromodel deflections 𝜶macro.

The deflection field 𝜶𝜷 is computed with Equation 3, so we ex-
pect it will capture the small-scale lensing distortions associated with
multi-plane ray tracing. However, after performing a lens modeling
operation with Equation 9, we cannot go back to interpret the physi-
cal properties (mass, location, density profile, etc.) of individual dark
matter halos behind the main deflector. Physically, our assumption
implies that the deflection field produced by the background popula-
tion of substructures depends primarily on the intrinsic dark matter
characteristics of that population and other fixed geometrical effects,
and that flux ratio statistics we obtain from considering many real-
izations of substructure do not depend strongly on the coupling to
the main deflector deflection field. This formalism shares some sim-
ilarities with the perturbative formalism presented by Fleury et al.
(2021), but differs in that we compute 𝜶𝜷 with exact ray tracing.

Equation 9 increases the speed of lens mass and source light recon-
struction with line-of-sight halos included in the lens model because
it decouples deflections produced by halos behind the main deflector
from deflections produced in the main lens plane. Thus, using Equa-
tion 9 requires only one full ray tracing calculation to the source
plane per coordinate in the image plane, circumventing the repeated
evaluation of step 𝑖𝑖𝑖 for each new proposal of 𝜶macro. A lens mass
and source light reconstruction with substructure performed accord-
ing to this procedure takes less than ten minutes, corresponding to
an increase in speed by a factor between 100-1000, depending on
the number of line-of-sight halos behind the main deflector. We have
added this decoupled multi-plane approximation for option use in
lenstronomy 5.

3.3 Validity of the decoupled multi-plane approximation

We can check the validity of the approximation discussed in the pre-
vious section for predicting image positions and flux ratio statistics
through comparisons with the statistics obtained by exact multi-plane
ray tracing. First, using exact ray tracing techniques discussed by
Gilman et al. (2019) we compute 𝑝eqn3

(
𝑶pos,𝑶f |𝒒cdm

)
, the prob-

ability of observing a given set of flux ratios with subhalos and
line-of-sight halos included in the lens model with properties as
prescribed by CDM (represented by 𝒒cdm). We then repeat this pro-
cedure using the ray tracing approximation discussed in the previous
section to compute the likelihood 𝑝eqn9

(
𝑶pos,𝑶f |𝒒cdm

)
. For details

regarding the substructure models we use for these tests, we refer to
Section 4.1. We perform these calculations using the image positions
of a reference mock lens model created without substructure (here-
after, the “smooth model”). This reference model has lens (source)
redshifts 𝑧d = 0.5 (𝑧source = 1.5), and a mass profile parameterized
as an elliptical power law with Einstein radius of 1 arcsec, an axis
ratio of 0.75, a logarithmic mass profile slope of −2.0, and external
shear strength of 0.09.

Figure 3 shows the joint likelihoods for the three flux ratios of the
mock lens, with the flux ratios of a reference lens model with the
same lens model smooth lens model marked with the green points.
The likelihood computed through exact ray tracing is shown in black,
while the likelihood computed with the approximation introduced in
the previous sub-section is represented in blue. The likelihoods peak
at the smooth model flux ratio values, which is simply a statement

5 This notebook illustrates the functionality in combination with pyHalo.
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Figure 4. The spiral galaxy used in the mock lens systems as the lensed
quasar host galaxy. This image was extracted from the COSMOS catalog
(Wagner-Carena et al. 2023).

that substructure introduces perturbations around the flux ratios pre-
dicted by the smooth lens model. As the likelihood contours appear
indistinguishable, we can conclude that the approximation presented
in the previous section does not introduce a detectable bias in the
model-predicted image flux ratios for a CDM dark matter model.

Unlike the flux ratios and image positions, it is computationally in-
tractable to compare our approximation with results obtained through
exact ray tracing methods for reasons discussed in Section 3.1. In-
stead, we perform tests with simulated datasets to verify that we
obtain unbiased inferences of dark matter substructure properties
when using this approximation to reconstruct imaging data with sub-
structure included in the lens model. We describe the details of these
simulations in the following section.

4 TESTS ON SIMULATED DATA

This section details the how we create simulated datasets with which
to test the lens modeling methodology discussed in the previous
section. Section 4.1 discusses the warm dark matter model on which
we test the methodology. Section 4.2 discusses the properties of the
simulated main deflectors we use in our simulations. Section 4.3
details the parameterization of the lens and source light models used
to create and model the simulated datasets. Section 4.4 details the
modeling assumptions related to the observing conditions and point
spread function. Throughout this section we use U to represent a
uniform prior and G to represent a Gaussian prior.

4.1 Modeling of dark matter subhalos and line-of-sight halos

We test the methodology presented in Section 3 on a warm dark
matter (WDM) model, although the methodology we present is ap-
plicable to any theory that predicts the abundance and internal struc-
ture of halos. Warm dark matter refers to a class of theory in which
the abundance and density profiles of dark matter halos become
suppressed below a certain mass threshold determined by the free-
streaming length. We model the halo mass function in WDM using

the parametric form

𝑑𝑁WDM
𝑑𝑚

=
𝑑𝑁CDM
𝑑𝑚

(
1 +

(
𝑎
𝑚hm
𝑚

)𝑏)𝑐
, (10)

with 𝑎 = 2.3, 𝑏 = 0.8, and 𝑐 = −1.0 (Lovell 2020), and 𝑑𝑁CDM/𝑑𝑚
represents the (sub)halo mas function in CDM. We draw line-of-sight
halos the Sheth-Tormen (Sheth et al. 2001) halo mass function, and
generate subhalos from a mass function of the form

𝑑2𝑁

𝑑𝑚𝑑𝐴
=

Σsub
𝑚0

(
𝑚

𝑚0

)−𝛼
. (11)

We use a pivot scale 𝑚0 = 108𝑀⊙ , and a logarithmic profile slope
𝛼 = 1.9 (Springel et al. 2008). We apply the same suppression
function in Equation 10 to both the line-of-sight and subhalo mass
functions.

We model halo density profiles as tidally-truncated Navarro-Frenk-
White profiles (Navarro et al. 1997; Baltz et al. 2009)

𝜌 (𝑟, 𝑟𝑠 , 𝑟𝑡 ) =
𝜌𝑠

(𝑟/𝑟𝑠) (1 + 𝑟/𝑟𝑠)2
𝑟2
𝑡

𝑟2
𝑠 + 𝑟2

𝑡

(12)

where 𝜌𝑠 is a characteristic central density, 𝑟𝑠 is the scale radius, and
𝑟𝑡 implements a tidal radius. For field halos, we set 𝑟𝑡 equal to 𝑟50,
which is comparalbe to the splash-back radius of a halo (Diemer &
Kravtsov 2014; Adhikari et al. 2014; More et al. 2015). We truncated
subhalo density profiles based on the mass and three-dimensional
position inside the host (see Gilman et al. (2020)).

The central density 𝜌𝑠 determines the lensing efficiency of a halo
of a fixed total mass. The delayed onset of structure formation in
WDM models suppresses the central density of halos with mass
below𝑚hm (Bose et al. 2016; Ludlow et al. 2016). The concentration-
mass relation establishes the connection between 𝜌𝑠 and halo mass
through the concentration parameter, 𝑐. We use the concentration-
mass relation presented by Diemer & Joyce (2019), and implemented
with the software colossus (Diemer 2018), to assign concentrations
to CDM halos. We compute the concentrations in WDM according
to (Bose et al. 2016)

𝑐WDM (𝑚, 𝑧) = 𝑐CDM (𝑚, 𝑧)
(
1 + 60

𝑚hm
𝑚

)−0.17
(1 + 𝑧)𝛽 (𝑧) , (13)

where 𝛽 (𝑧) = 0.026 − 0.04𝑧.
We generate line-of-sight halos (subhalos) with (infall) masses in

the range 106 − 1010𝑀⊙ . Halos more massive than 1010𝑀⊙ would
likely contain a luminous galaxy, in which case we would include
these objects in the lens macromodel. Halos less massive than 106𝑀⊙
lie below the sensitivity threshold of our data given our assumptions
regarding the background source size (see the next sub-section).

In the dark matter inference, we sample Σsub from a log-uniform
prior log10 Σsub ∈ U (−2.5,−1.0). This is a broad and uninfor-
mative prior that we use to reveal any degeneracies between Σsub
and 𝑚hm, and to understand to what degree imaging data can break
these degeneracies. We sample log10 𝑚hm ∈ U (4.0, 10.0). For both
the halo mass function and concentration-mass relation, values of
𝑚hm < 105𝑀⊙ result in mass functions and concentration-mass re-
lations that deviate from the CDM prediction below the estimated
sensitivity threshold of our data; thus, we can consider these re-
alizations as consistent with CDM. We fix the values of all other
parameters introduced in this section to the stated values.

We create two sets of simulated data with which to test our in-
ference methodology. First, we create a sample of 25 lenses with a
CDM ground truth using Σsub = 0.05 kpc−2 and 𝑚hm = 0. The cho-
sen value of Σsub roughly corresponds to the amount of substructure
inferred by Gilman et al. (2020) and is consistent with N-body to
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Figure 5. The imaging data (left) and the true convergence in dark matter substructure (right) for mock lens #4. This system has flux ratios consistent with those
predicted by a smooth lens model.
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Figure 6. The imaging data (left) and the true convergence in dark matter substructure (right) for mock lens #6. Several dark matter halos and line-of-sight halos
near image A impart a strong perturbation to the magnification of this image.

within O (10) factor (Fiacconi et al. 2016). Second, we create a sam-
ple of 25 lenses with a WDM ground truth with Σsub = 0.04 kpc−2

and 𝑚hm = 107.5𝑀⊙ . Both sets of mocks have the same main deflec-
tor mass models and background sources, but the image positions
and flux ratios between them differ slightly due to the different pop-
ulations of halos in the lens models.

4.2 Mass profile of the main deflectors

In this section we discuss how we create simulated main deflector
mass profiles for the mock lenses (Section 4.2.1) and how we model
the mock lenses during the inference performed on the mock datasets
(Section 4.2.2).

4.2.1 Creating mock lens mass profiles

To test the methodology discussed in Section 2 we create a sample
of 25 mock lens systems with properties broadly comparable to the
know population of such systems (Auger et al. 2010; Oguri & Mar-
shall 2010). The mocks have lens (source) redshifts in the range 0.3
- 0.9 (0.9 - 3.0). We model the main deflector galaxy as a elliptical
power-law (EPL) mass profile with an Einstein radius set to 1 arcsec
for each system, axis ratios in the range 0.50 - 0.95, and logarith-
mic mass profile slopes 𝛾 drawn from a Gaussian prior N (2.0, 0.1).
We apply external shear across the main lens plane with a random
orientation and a strength 𝛾ext in the range 0.02 - 0.16.

The observed population of elliptical galaxies sometimes exhibit
deviations from ellipticity quantified in terms of multipole perturba-
tions on top of the elliptical mass profile (Bender et al. 1989; Hao
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Figure 7. The imaging data (left) and the true convergence in dark matter substructure (right) for mock lens #11. Like Mock 4, this system has flux ratios
consistent with those predicted by a smooth lens model.
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Figure 8. The imaging data (left) and the true convergence in dark matter substructure (right) for mock lens #23. Like Mock 6, the flux ratios in this system
experience perturbation by halos.

et al. 2006). A multipole perturbation adds convergence6

𝜅𝑚 (𝑟, 𝜙) =
𝑎m(phys)

𝑟
cos (𝑚 (𝜙 − 𝜙𝑚)) (14)

where 𝑟 is the separation in arcseconds from the mass centroid, the
angle 𝜙𝑚 determines the orientation, and 𝑎m(phys) is the amplitude
of the convergence associated with the multipole perturbation. Oh
et al. (in prep) further explore the implications of these multipole
perturbations in the context of flux ratio analyses in strong lenses.

We base our implementation of the multipole perturbations on
the observed properties of 847 elliptical galaxies presented by Hao
et al. (2006). The shape of the iso-density contours inferred from the
light (and assuming light traces mass) can be related to the physical
amplitude of the perturbation by 𝑎m(phys) = 𝑎m× 𝜃𝐸√

𝑞
, where 𝜃E is the

6 Convergence refers to a projected mass normalized by the critical surface
mass density for lensing.

Einstein radius, 𝑞 is the axis ratio of the ellipse and 𝑎𝑚 represents the
observable deviation from ellipticity of the light. The third (𝑚 = 3)
and fourth-order (𝑚 = 4) moments make the dominant contribution
to the multipole expansion of galaxy shapes (Bender et al. 1989). Hao
et al. (2006) find 𝑎3 distributed as G (0.0, 0.005) with values of 𝜙3
uncorrelated with the position angle of the underlying mass profile.
Hao et al. (2006) also measure 𝑎4 ∈ G (0.0, 0.01) with an orientation
that tends to align with the orientation of the underlying mass profile.
When the 𝑎4 orientation aligns with the orientation of the underlying
ellipse the profile appears boxy (𝑎4 < 0) or disky (𝑎4 > 0). The
observed amplitudes 𝑎3 and 𝑎4 have no apparent correlation.

Based on the findings by Hao et al. (2006), when creating mock
deflectors we include the dominant 𝑚 = 3 and 𝑚 = 4 terms and
use priors for their observed amplitudes 𝑎3 ∈ G (0.0, 0.005) and
𝑎4 ∈ G (0.0, 0.01). Based on the measurements by Hao et al. (2006)
and Oh et al. (in prep), we enforce alignment between the 𝑎4 ori-
entation and the underlying EPL profile (producing boxy or disky
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Figure 9. The inference on the macromodel parameters in Mock 4 in the CDM ground truth sample. The black distribution shows the inference obtained from
using only image positions and flux ratios to constrain the lens model.The blue distribution results from using image positions and imaging data to constrain
the lens model, and the magenta results from using image positions, flux ratios, and imaging data. These distributions are marginalized over the properties of
substructure in each system. From left, the x-axis labels correspond to the normalization of the main deflector mass profile 𝜃E, the axis ratio 𝑞, the position
angle of the main deflector ellipticity 𝜙q, the external shear strength 𝛾ext, the position angle of the external shear 𝜙𝛾ext, the logarithmic profile slope of the main
deflector 𝛾, and the multipole moments 𝑎3 and 𝑎4. Contours enclose 68% and 95% confidence intervals, and the true lens model parameters for the mock lens
are marked with the green crosshairs.

contours), and sample 𝜙3 ∈ U (−𝜋/6, 𝜋/6). For additional discus-
sion regarding the role of multipole perturbations in dark matter
inferences with quadruply-imaged quasars, we refer to Appendix B.

4.2.2 Modeling of the lens mass profile

When modeling the mock lenses, all of the parameters that describe
the EPL profile are left free to vary while reconstructing the imaging
data, as well as the strength and position angle of the external shear.
We draw 𝑎3, 𝑎4, and 𝜙3 from the same priors as those used to create

the simulated datasets. During the reconstruction of the imaging data
for each realization, we keep the multipole terms fixed to the values
drawn from their respective priors. We eventually constrain these
parameters when down-selecting on the imaging data and flux ratio
summary statistics, as discussed in Section 2.2.

We have experimented with allowing 𝑎3 and 𝑎4 to vary freely while
reconstructing the imaging data, but find that this causes their inferred
amplitudes to take on unphysical values. This unexpected behavior
could arise from degeneracies in the imaging data likelihood between
multipole perturbations to the lens model and full populations of
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Figure 10. The inference on the macromodel parameters in Mock 6 in the CDM ground truth sample obtained from only the image positions and flux ratios
(black), from the image positions and imaging data (blue), and from the image positions, flux ratios, and imaging data (magenta).

dark matter halos, as well as limitations associated with the PSF
and source reconstruction. During the lens modeling, we include a
Gaussian prior on 𝛾, the logarithmic slope of the main deflector mass
profile, with a mean of -2.0 and standard deviation of 0.2.

4.3 Source and lens light models

In the next two sections, we discuss the lens and source light models
used to create the simulated datasets (Section 4.3.1), and how we
model the lens and source light profiles in the inference (Section
4.3.2).

4.3.1 Creating mock lens and source light profiles

We parameterize the main deflector light as a circular Sérsic profile
(Sérsic 1963). The source light model includes two components: the
lensed quasar and its host galaxy. For the quasar, we assume flux
ratios measured from the warm dust region now observable with
JWST (Nierenberg et al. 2023) with a physical size ∼ 1 − 10 pc.
To create the mocks, we model the quasar emission as a circular
Gaussian with a full-width at half maximum sampled from a uniform
prior U (1 − 10) pc. We assume a flux ratio measurement precision
of 3%, and an astrometric precision in the relative quasar image
positions of 5 milli-arcseconds, based on the recent measurements
(Nierenberg et al. 2023).

To create realistic lensed arcs, we place the spiral galaxy shown in
Figure 4 at the source redshift for each of the 25 mock deflectors. We

MNRAS 000, 1–26 (2024)



12 Gilman et al.

0.6

0.71

0.825

q

MOCK #11
IMAGE POSITIONS & FLUX RATIOS
IMAGE POSITIONS & IMAGING DATA
IMAGE POSITIONS, FLUX RATIOS & IMAGING DATA

0.875

1.025

1.15

q

0.045

0.075

0.105

ex
t

-1.4

-1.2

-1.0

ex
t

1.75

1.925

2.1

-0.015

0.0

0.015

a 3

0.985 1.0
1.015

E

-0.025

-0.0075

0.01

a 4

0.6 0.71
0.825

q
0.875

1.025
1.15

q
0.045

0.075
0.105

ext

-1.4 -1.2 -1.0

ext
1.75

1.925 2.1
-0.015 0.0

0.015

a3
-0.025

-0.0075
0.01

a4

Figure 11. The inference on the macromodel parameters in Mock 11 in the CDM ground truth sample obtained from only the image positions and flux ratios
(black), from the image positions and imaging data (blue), and from the image positions, flux ratios, and imaging data (magenta).

extract this source from the COSMOS survey catalog (Koekemoer
et al. 2007) using the software package paltas (Wagner-Carena
et al. 2023). This particular galaxy was selected because it exhibits
enough morphological complexity (spiral arms) to warrant a small-
scale basis set expansion of its light profile to reproduce a lensed
image. Many real strong lens systems exhibit this level of complexity
in their inferred source light profiles, and we include this feature
in our simulations to determine whether our methodology yields
unbiased inferences of substructure properties with a complex source
morphology.

4.3.2 Modeling of lens and source light profiles

We model the main deflector light as an elliptical Sérsic profile. We
model the quasar emission region as a circular Gaussian, and sam-

ple its size uniformly U (1, 10) pc for each system. We model the
quasar host galaxy with an ellpitical Sérsic profile with additional
small-scale complexity implemented through shapelet basis func-
tions (Birrer et al. 2015). An integer 𝑛max determines the degree of
complexity these functions can describe, with the complexity of the
reconstructed image with increasing 𝑛max.

To choose an appropriate level of source complexity in the model
we choose the value of 𝑛max that minimizes the Bayesian information
criterion (BIC) defined as

BIC = k log (n) − log (max [L]) , (15)

where 𝑘 is the number of model parameters, 𝑛 represents the number
of data points, and max [L] represents the maximum likelihood of
the data given the model. The BIC statistic compensates between
obtaining a better fit to data and over-fitting a model. To calculate
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Figure 12. The inference on the macromodel parameters in Mock 23 in the CDM ground truth sample obtained from only the image positions and flux ratios
(black), from the image positions and imaging data (blue), and from the image positions, flux ratios, and imaging data (magenta).

the BIC, we fit a smooth lens model (i.e. a lens model without
substructure) to each mock. For each mock system, we found the
BIC reaches a minimum for a source model consisting of an elliptical
Sérsic profile plus shapelets at 𝑛max = 10. With this source model we
obtain a reduced 𝜒2 per degree of freedom 𝜒2/DOF ≈ 1.2 for the lens
models we accept based on the imaging data likelihood. Appendix
A provides additional discussion regarding the reconstruction of the
source light in our simulations.

4.4 Point spread function and observing conditions

Most of the known quadruply-imaged quasars, and many of those
with flux ratios recently measured by JWST, have archival HST imag-
ing (Shajib et al. 2019; Schmidt et al. 2023). Anticipating use of this
data, we therefore assume HST-like observations with a pixel size

of 0.05 arcsec, an r.m.s. background noise per pixel of 0.006 pho-
tons/sec, and an exposure time of 1600 sec. We use a Gaussian point
spread function model with a width of 100 m.a.s. in the creation and
modeling of the mock lenses7.

5 RESULTS

This section presents the results of the inference of the lens model
and substructure properties obtained from 25 simulated strong lens

7 In practice, one typically reconstructs the PSF simultaneously with the
lensed image and source light. This methodology is possible within our
analysis framework, but it was not included in our tests on simulated data.
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Figure 13. The likelihood functions for the normalization of the subhalo mass function, Σsub, and the turnover scale of a WDM mass function, 𝑚hm, for Mocks
4, 6, 11, and 23 in the CDM ground truth sample. These likelihoods result from the down-selection on flux ratio and imaging data summary statistics described
in Section 2.2. The color scale indicates relative likelihood between different points in parameter space.

systems assuming a CDM ground truth, and 25 lens systems created
assuming a WDM ground truth. Both sets of lens systems are ana-
lyzed using the inference methodology discussed in Section 2, the
lens modeling approach discussed in Section 3, and the simulation
details presented in Section 4. We begin in Section 5.1 with case
studies of four mock lens systems created with a CDM ground truth.
We discuss in detail how the image positions, flux ratios, and imaging
data work in tandem to simultaneously constrain the mass profile of
the main deflector and the properties of substructure in each system.
In Section 5.2, we present the joint constraints on the normalization
of the subhalo mass function and the free-streaming length of dark
matter obtained from the full sample, and quantify the degree to
which including constraints from lensed arcs improves constraints
on substructure properties relative to existing analysis methods that
use only image positions and flux ratios.

5.1 Case studies

We begin by analyzing the results of applying our inference method-
ology to four mock lenses created with a CDM ground truth to gain
physical insight into how the joint modeling of lensed arcs, image
positions and flux ratios constrains the lens model and the properties
of substructure. Figures 5, 6, 7, and 8 show the four lenses chosen for
these case studies. We pick these four systems because they exhibit
a variety of image configurations, lens and source redshifts, expe-
rience varying degrees of perturbation by halos, and have among
the most informative likelihood functions. The left panels show the
simulated lensed images, while the right-hand panels display the true
convergence in dark matter substructure for each mock. As in pre-

vious work (Gilman et al. 2019), we define the convergence for a
multi-plane lens system in terms of the divergence of the deflection
field (see Equation 3)

𝜅 ≡ 1
2
∇ · 𝜶eff . (16)

To illustrate the distribution of dark matter substructure, we subtract
the convergence from the lens macromodel, 𝜅macro, from the total
convergence given by Equation 16. In place of the deflection field
from background halos, we take the divergence of 𝜶𝜷 , the effec-
tive deflection field from halos behind the main deflector defined in
Section 3.

5.1.1 The complementary information conveyed by imaging data
and flux ratios

As the imaging data subtends angular scales comparable to the im-
age separation, we expect the reconstruction of the lensed arcs will
impose the strongest constraints on the large-scale mass profile of
the main deflector. Figures 9, 10, 11, and 12 show the inference
on a subset of the parameters that describe the main deflector mass
profile. The parameters shown in each figure include the normal-
ization of the main deflector mass profile 𝜃E, the axis ratio 𝑞, the
ellipticity position angle 𝜙q, the external shear strength 𝛾ext, the ex-
ternal shear position angle 𝜙ext, and the amplitude of the 𝑚 = 3
and 𝑚 = 4 multipole moments 𝑎3 and 𝑎4. Contours show the 68%
and 95% confidence intervals for the parameters after marginalizing
over the properties of substructure in each lens. The black contours
show constraints obtained from the ray tracing methods presented by
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Figure 14. Reconstructed lensed image (left), substructure convergence (center), and normalized residual map from the reconstructed imaging data of Mock 4
in the CDM ground truth sample. The top two rows depict realizations accepted based matching the image positions, flux ratios, and imaging data. The bottom
rows show examples of systems that match the flux ratios, but which we reject due to a poor fit to the imaging data. The green (black) numbers and curves show
the true (model-predicted) flux ratios and critical curves, respectively.
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Figure 15. The same as Figure 14, but with four example realizations generated for Mock 6 in the CDM ground truth sample. Simultaneously reproducing the
flux ratios and imaging data in this system requires dark matter substructure near image A. As shown by the rejected lens model configuration in the third row,
incorporating imaging data allows us to rule out lens model configurations that match the flux ratios through large-scale deformation of the lens mass profile,
isolating the effects of substructure on these data.
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Figure 16. The same as Figure 14, but with four example realizations generated for Mock 11 in the CDM ground truth sample. This system has flux ratios
consistent with those predicted by a smooth lens model, so accepted realizations are more likely to have fewer halos. As seen in the bottom row, the information
encoded by the imaging data allows us to rule out lens model configurations that match the flux ratios through a combination of substructure and large-scale
deformation of the lens mass profile.
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Figure 17. The same as Figure 14, but with four example realizations generated for Mock 23 in the CDM ground truth sample. Proposed lens models accepted
for this system tend to have substructure perturbing image B.
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Gilman et al. (2019) that use only image positions and flux ratios to
constrain the lens model. Blue contours show constraints obtained
from applying methods discussed in Sections 2.2 and 3 to compute
the likelihood and model the image positions and imaging data. The
magenta contours show constraints obtained from combining the flux
ratio likelihood with the image position and imaging data likelihoods.

By comparing the volume enclosed by the black and blue distri-
butions in Figures 9-12, we conclude that the imaging data imposes
significantly stronger constraints on the main deflector mass profile
than those one obtains from only image positions and flux ratios. Us-
ing all available data (magenta), we obtain the tightest constraints on
the macromodel parameters, but adding flux ratio information to lens
models already constrained by imaging data leads to only marginal
improvement. These trends persist among all the mock lenses we
analyze in our simulations, and are consistent with a physical picture
in which the large-scale mass distribution of the lens is primarily
constrained by imaging data.

The flux ratios, however, convey vital information for constraining
the properties of the deflection field on angular scales below those
probed by imaging data8. Figure 13 shows the joint likelihood func-
tion computed with the image positions, flux ratios, and imaging
data for each of the four case study lenses shown in Figures 5-8. The
parameters shown in the figures are Σsub and 𝑚hm, the normalization
of the subhalo mass function (Equation 11) and the cutoff scale of
the halo mass function (Equations 10 and 13). The color scale in
Figure 13 corresponds to the relative likelihood between positions in
the parameter space. The top-left region of parameter space includes
dark matter models with a significant suppression of the halo mass
function and relatively few subhalos, while the bottom right corner
of parameter space includes a plethora of subhalos and a CDM-like
halo mass function.

The likelihoods shown in Figure 13 exhibit clear preferences for
models with a plethora of substructure in the case of Mocks 6 and 23,
and for relatively little substructure for Mocks 4 and 11. Note that the
improvement in the inference of the macromodel parameters shown in
Figures 9-12 after adding flux ratio information does not significantly
change between the four cases study lenses, and thus the degree to
which the flux ratios constrain the large-scale mass distribution of
the lens does not depend on the amount of substructure required to
fit the flux ratios. However, as we will discuss in the next section,
the imaging data strengthens inferences of substructure properties by
breaking degeneracies between large-scale deformation of the main
deflector mass profile and small-scale perturbations caused by halos.

5.1.2 Visualizing accepted and rejected realizations

A useful feature of the open-source code we present with our analy-
sis, samana9, is the ability to recreate a lens model from a random
seed assigned to each realization that we record as a model param-
eter. Thus, after down-selecting on lens models and substructure
realizations following the methodology discussed in Section 2.2, we
can regenerate lens models from the random seeds to gain physi-
cal insight as to why we reject or accept certain realizations when
computing the likelihood.

Figures 14, 15, 16, and 17 each show two examples of lens models

8 We recall that we have constructed the likelihood function in such a way
that the posterior distribution of substructure properties given the data can
only differ from the prior if one incorporates constraints from the flux ratios
(see Section 2.2 and Equation 6).
9 https://github.com/dangilman/samana

accepted based on fitting the imaging data and flux ratios (top two
rows), and two examples of lens models that we would accept based
on the image positions and flux ratios, but which we reject based on a
poor fit to the imaging data (bottom two rows). From left, the columns
show the reconstructed lensed image, the projected multiplane con-
vergence in substructure obtained from substracting the macromodel
convergence from the total convergence, i.e 1

2∇ · 𝜶eff − 𝜅macro, and
the normalized residuals from the fit to the imaging data. In the
center panels, we label the observed (model-predicted) flux ratios
in green (black), and the true (model-predicted) critical curves in
green (black). We have included the critical curves in these figures
to serve as a proxy for the shape of the main deflector. Alignment of
the critical curves indicates an accurate reconstruction of the main
deflector mass profile.

As shown in the top two rows of each figure, the realizations
that we accept simultaneously match the small-scale properties of
the deflection field constrained by the flux ratios and the large-scale
properties of the deflection field primarily constrained by the imag-
ing data. The bottom two rows of Figures 14-17 show examples of
realizations that match the observed image positions and flux ratios,
but which we reject based on a poor fit to the imaging data. In the
rejected lens models, a particular configuration of dark matter ha-
los conspires with a large-scale deformation of the deflection field
to produce the correct flux ratios, but these configurations of the
lens model cannot reproduce the observed lensed arcs. These fig-
ures provide a visual illustration of how incorporating imaging data
breaks degeneracies between large and small-scale properties of the
lens model, isolating flux ratio perturbations caused by halos from
large-scale deformations of the deflection field constrained by the
arcs.

Figures 14-17 also serve to aid in the interpretation of the likeli-
hood functions shown in Figure 13, with Mock 6 providing a par-
ticularly clear illustration of how perturbations by dark matter halos
manifest in the likelihood. Closely examining the true multiplane
convergence map for Mock 6 in right panel of Figure 6, a collection
of dark matter subhalos and line-of-sight halos appear in close prox-
imity to image A (the bottom-right image). The collective impact of
these structures imparts a∼ 12% perturbation to the magnification of
this image. To match this feature in the data, substructure models that
match the flux ratios in Mock 6 tend to have a single massive halo,
or a collection of low-mass halos, perturbing image A. These halos
appear prominently in the convergence maps shown in the central
panels of Figure 15. We see a similar pattern in the case of Mock 23,
in which accepted lens models tend to have substructure perturbing
the magnification of image B.

Substructure realizations with halos perturbing the images in Mock
6 and 23 occur more frequently in CDM than in WDM, and thus the
likelihood functions shown in Figure 13 for these systems punish
models with fewer halos. On the other hand, Mocks 4 and 11 have
flux ratios consistent with those predicted by a smooth lens model
to within the measurement uncertainties. As such, the substructure
realizations that match the flux ratios for Mocks 4 and 11 tend to have
fewer halos than the dark matter models that match the flux ratios
in Mocks 6 and 23, as reflected in the likelihoods. The likelihood
function from the full sample of mock lenses results from a product
of the individual likelihoods, and is discussed in the next section.

5.2 Inference on substructure properties from the full sample

Figure 18 shows the joint inference on the normalization of the sub-
halo mass function, Σsub, and the half-mode mass, 𝑚hm, obtained
from 25 mock lenses. The black contours show the inference re-
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Figure 18. The posterior distribution for Σsub and 𝑚hm obtained from modeling only image positions and flux ratios (black), and image positions, flux ratios,
and imaging data (blue). These posteriors are marginalized over nuisance parameters that include the mass profile of the main deflector, including multipole
moments 𝑎3 and 𝑎4, the finite-size of the quasar emission region, and the surface brightness of the lensed quasar host galaxy. Black and blue vertical bars in
the marginal likelihood for 𝑚hm correspond to 95% exclusion limits. The red crosshairs indicates the ground-truth used to create the simulated data, and the
vertical lines in the marginal likelihood for 𝑚hm correspond to 95% exclusion limits. For visualization we have marked the CDM ground truth 𝑚hm = 0 as
𝑚hm = 104.2𝑀⊙ . The inference assumes flux ratio measurement precision of 3 percent and astrometric precision of 0.005 milli-arcseconds.

dataset used likelihood ratio CDM:WDM likelihood ratio CDM:WDM likelihood ratio CDM:WDM likelihood ratio CDM:WDM
7.0 < log10 𝑚hm/𝑀⊙ < 7.5 7.5 < log10 𝑚hm/𝑀⊙ < 8.0 8.0 < log10 𝑚hm/𝑀⊙ < 8.5 8.5 < log10 𝑚hm/𝑀⊙ < 9.0

image positions & 3:1 4:1 9:1 23:1
and flux ratios
image positions, 4:1 10:1 50:1 301:1
flux ratios, &
imaging data
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Figure 19. The joint posterior on the normalization of the subhalo mass
function Σsub and the half-mode mass 𝑚hm for a simulated dataset with a
WDM ground truth 𝑚hm = 107.5𝑀⊙ . The posterior results from flux ratio
measurement uncertainties of 1 percent. Black contours show the posterior
with a log-uniform prior on Σsub, and blue contours show the result of in-
corporating a Gaussian prior on Σsub centered on the ground truth value
of log10 Σsub = −1.4 with a width 0.2 dex. As in Figure 18, contours corre-
spond to 68% and 95% confidence intervals, the red crosshairs mark the input
ground truth, and the vertical bars in the 𝑚hm marginal likelihood represent
95% exclusion limits.
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Figure 20. The same as Figure 19, but assuming flux ratio measurement
uncertainties of 3 percent.

sulting from applying the ray tracing methods presented by Gilman
et al. (2019), which use only the image positions and flux ratios
to constrain the lens model and substructure properties. The blue
contour in Figure 18 shows the constraints resulting from applying
the methodology presented in Section 2, in which we use the lensed
arcs, image positions, and flux ratios to constrain the lens model.
Both distributions assume a flux ratio measurement precision of 3%.
To make a direct comparison between these two approaches and eval-
uate the relative improvement, we compute the likelihood obtained
from only the image positions and flux ratios (black contours) using
the same tolerance threshold 𝜖 to down-select on the flux ratio sum-
mary statistics when computing the blue likelihood, which uses all
of the available data.

In terms of confidence intervals, incorporating imaging data im-
proves the 95% exclusion level by 0.5 dex; with only image positions
and flux ratios, we find log10 𝑚hm < 107.7𝑀⊙ , and log10 𝑚hm <

107.2𝑀⊙ when incorporating imaging data with a log-uniform prior
on 𝑚hm ∈ U (4, 10). We can also quantify the improvement gained
by incorporating imaging data in terms of relative likelihoods, which
do not depend on the prior. First, we define a region of parameter
space associated with CDM as having 4.0 < log10 𝑚hm/𝑀⊙ < 4.5,
and regions of parameter space associated with WDM as bins in
log10 𝑚hm with a width of 0.5 dex between 107𝑀⊙ and 109𝑀⊙ . We
then compute the relative likelihood between CDM and WDM as the
volume of the posterior with log10 𝑚hm < 4.5 to the volume of the
posterior with log10 𝑚hm in each bin.

Table 5.1.2 summarizes the inferred likelihood ratios. In the
“coldest” WDM bin with 𝑚hm in the range 107 − 107.5𝑀⊙ , in-
corporating constraints from the lensed arcs improves the likeli-
hood ratios punishing WDM models by a factor of 1.3. At scales
𝑚hm ∈ 107.5 − 108𝑀⊙ , adding imaging data strengthens the likeli-
hood ratios by a factor of 2.5, eventually reaching a factor 13.1 for
𝑚hm ∈ 108.5 − 109𝑀⊙ . The likelihood function shrinks the volume
of the posterior distribution relative to the prior volume by a factor
of 4 using only image positions and flux ratios, and by a factor of 7
using the image positions, flux ratios, and imaging data.

Figures 19 and 20 show the inference on 25 lenses created with
a WDM ground truth 𝑚hm = 107.5𝑀⊙ using the lensed arcs and
flux ratios. Figure 19 assumes a flux ratio measurement precision
of 1%, and Figure 20 assumes a flux ratio measurement uncertainty
of 3%. The black distribution corresponds to a log-uniform prior
on the amplitude of the subhalo mass function, and the blue results
from assuming a prior on the amplitude of the subhalo mass function
log10 Σsub = −1.4 ± 0.2.

Our inference method recovers the input values for these param-
eters, even after marginalizing over the main deflector mass profile
including third and fourth order multipole perturbations, the size of
the warm dust region surrounding the lensed quasar, and the lensed
quasar host galaxy light. The covariance between Σsub and 𝑚hm
manifests more prominently for these inferences than for the CDM
ground truth (Figure 18), but incorporating an informative prior for
the amplitude of the subhalo mass function can aid in breaking this
covariance. In practice, such a prior could come from N-body sim-
ulations or semi-analytic models (e.g. Benson 2012; Fiacconi et al.
2016; Jiang et al. 2021; Nadler et al. 2023a; Mansfield et al. 2023;
Du et al. 2024), which make increasingly robust predictions for the
number of main deflector subhalos that appear in projection near
the Einstein radius in typical host halos ∼ 1013𝑀⊙ . Alternatively,
a prior on the amplitude of the subhalo mass function could come
from measurements of the halo mass function in lenses from grav-
itational imaging (e.g. Vegetti et al. 2014; Hezaveh et al. 2016; He
et al. 2022; Wagner-Carena et al. 2023). The marginal likelihood of
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𝑚hm excludes CDM for the posteriors that assume a prior on Σsub,
with log10 𝑚hm/𝑀⊙ > 6.7 and log10 𝑚hm/𝑀⊙ > 5.2 for flux ratio
measurement uncertainties of 1% and 3%, respectively.

Comparing Figures 19 and 20, the inference on WDM parameters
is particularly sensitive to the measurement uncertainty in the flux
ratios. The systems observed by JWST (Nierenberg et al. 2023) have
typical uncertainties of 3%, but we have included the inference as-
suming 1% uncertainties to demonstrate that our inference method-
ology can recover input ground truth with sufficient measurement
precision. The constraints obtained assuming 1% precision suggest
that a larger sample of lenses with 3% uncertainties could yield a
statistically significant constrain on WDM models with a turnover
𝑚hm ∼ 3 × 107𝑀⊙ .

6 CONCLUSIONS

We present a self-consistent formalism to jointly model lensed image
positions, flux ratios, and extended lensed arcs in strong lens systems
comprised of a multiply-imaged quasar and extended emssion from
a background galaxy. To address the computational challenge that
has precluded the joint reconstruction of flux ratios and lensed arcs
to date, we develop an approximation scheme for full multi-plane
ray tracing. To validate the methodology, we test it on 25 simulated
strong lens systems to constrain a fiduciary warm dark matter (WDM)
model with simulated datasets prepared assuming CDM. We assume
observations of lensed arcs come from the HST, and flux ratios
from the warm dust region observed by JWST with measurement
uncertainties of 3%. Our simulations account for finite source size
effects in the calculation of image magnifications, and we marginalize
over the unknown source size for each system. The simulated lenses
include a complex source morphology in the form of a spiral galaxy,
and deviations from an elliptical symmetry in the main lens mass
profile parameterized by 𝑚 = 3 and 𝑚 = 4 multipole terms. As a
point of comparison for the new lens modeling techniques we present,
we analyze the same set of twenty-five mock lenses using the lens
modeling methods presented by Gilman et al. (2019), which use only
image positions and flux ratios to constrain the lens mass profile and
substructure properties. Our main results are summarized as follows:

• Incorporating lensed arcs leads to stronger constraints on the
free-streaming length of WDM than analyses that use only im-
age positions and flux ratios to constrain the lens model. The
95% exclusion limit on the half-model mass 𝑚hm improves by
0.5 dex. The relative likelihood of CDM to WDM improves by
factors of 1.3, 2.5, 5.6, and 13.1 for WDM models with mass
function turnovers 𝑚hm ∈

[
107 − 107.5𝑀⊙

]
,
[
107.5 − 108.0𝑀⊙

]
,[

108.0 − 108.5𝑀⊙
]
, and

[
108.5 − 109.0𝑀⊙

]
, respectively, and the

posterior volume shrinks by a factor of 1.8. In Section 5.1, we show
that this additional constraining power comes from breaking degen-
eracies between large-scale deformation of the deflection field, which
we constrain with the lensed arcs, and small-scale perturbation to im-
age magnifications by dark matter halos.

• Our method can recover the free-streaming cutoff in a WDM
mass function, although the ability to detect a WDM cutoff near
107𝑀⊙ requires measurement precision of 1%, or a larger sample of
lenses with both flux ratio measurements and lensed arcs than the 25
considered here. Theoretically-motivated priors for the amplitude of
the subhalo mass function can aid in breaking covariance between
the number of subhalos and the free-streaming cutoff.

• The presence of multipole perturbations in the lens mass profile,
provided we also include these terms in the lens models used to

analyze data, does not incur a detectable source of systematic bias
in inferred substructure properties when only image positions and
flux ratios are used to constrain the lens model. Thus, we can apply
the methods presented by Gilman et al. (2019) to model quadruply-
imaged quasars without prominent lensed arcs.

The methodology we present can be applied to any dark matter
model that predicts the form of the halo mass function and halo
density profiles. For example, in self-interacting dark matter theories
halos can undergo core collapse, a process that significantly increases
their central density and therefore their lensing efficiency (Gilman
et al. 2021; Minor et al. 2021; Yang & Yu 2021; Gilman et al. 2023;
Nadler et al. 2023b). In fuzzy dark matter models, wave interference
effects produce density fluctuations in the lens mass profile that
impact both flux ratios and lensed arcs (Laroche et al. 2022; Powell
et al. 2023). In terms of a direct test of a key prediction of cold
dark matter, incorporating constraints from lensed arcs increases
sensitivity to perturbation by low-mass substructure, as indicated by
the stronger constraints on mass function turnovers on scales below
107.5𝑀⊙ . This increased sensitivity will aid in pushing constraints
from strong lensing to scales below the threshold of galaxy formation,
to scales ∼ 107𝑀⊙ and below.

To test the methods described in this paper we have made various
simplifying assumptions when creating the simulated datasets and
in the modeling of dark matter substructure. First, we have assumed
perfect knowledge of the PSF when reconstructing the imaging data.
In practice, one must simultaneously reconstruct the PSF with the
lensed image and source. We can easily incorporate the PSF recon-
struction in our analysis when analyzing real data. Second, we have
made several simplifying assumptions regarding the dark matter sub-
structure model, including perfect knowledge of the amplitude of the
line-of-sight halo mass function and logarithmic slope of the subhalo
mass function. Improved treatments of the substructure models based
on the semi-analytic model galacticus are being developed for use
in forthcoming analyses, but these models were not developed at the
time we created the simulated data used in this work10. We expect
an improved treatment of the tidal evolution of subhalos will lead to
stronger constraints on dark matter models, but it does not affect our
conclusions regarding the relative improvement from incorporating
constraints from lensed arcs.

The number of mock lenses we have analyzed in this work is
partially motivated by the number of strong lens systems for which
we currently have archival HST imaging data of lensed arcs and
flux ratio measurements suitable for a milli-lensing analysis of dark
substructure. Suitable flux ratios for milli-lensing must come from
a region surrounding the background quasar spatially extended by
≳ 1pc such that it becomes immune to contamination from stellar
micro-lensing. Such measurements can come from observations of
nuclear narrow-line emission from Keck and the HST (Nierenberg
et al. 2014, 2017, 2020), radio measurements from VLBI (Koopmans
et al. 2004; McKean et al. 2007; Hsueh et al. 2020), or emission from
the warm dust region measured with JWST (Nierenberg et al. 2023).
The synthesis of strong lensing flux ratios and extended lensed arcs,
in combination with these various datasets from ground and space-
based observatories, advances the observational frontier of cosmic
probes of dark matter physics to uncharted territory.

10 Recent updates to pyHalo (versions 1.2.1 and later) includes an improve-
ment treatment of the tidal evolution of dark matter subhalos calibrated against
the most up-to-date version of galacticus (Gannon et al., in prep).
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APPENDIX A: THE IMAGING DATA LIKELIHOOD

As discussed in Section 2.2, our strategy for incorporating the imag-
ing data likelihood is one in which the imaging data alone does
not constrain dark matter hyper-parameters. This requirement differs
from the likelihood function relevant for gravitational imaging of
individual halos (e.g. Vegetti et al. 2014; Powell et al. 2022, 2023),
in which one explicitly uses imaging data to characterize the mass
and position of a dark substructure. Obtaining a reliable likelihood
of substructure properties from the imaging data requires a careful
calibration of the sensitivity function of the lensed arc and various
systematics associated with the lens and source light models (Veg-
etti et al. 2014; Cao et al. 2022; Despali et al. 2022; He et al. 2023;
O’Riordan & Vegetti 2024). The strategies to calibrate the sensitivity
function and contend with systematic uncertainties in current gravi-
tational imaging studies with single-halo models do not necessarily
carry over to our analysis methods because we perform the lens mass
and source light reconstruction with full populations of subhalos and
line-of-sight halos.

Figure A1 shows the imaging data likelihoods derived in our anal-
ysis. The four panels show the distribution of log-likelihoods derived
from fits to the imaging data for the four case study mock lenses.
Vertical bars represent varying degrees of knowledge regarding the
true population of halos and the true structure of the lensed source, as
indicated by the figure legend. The black and red distributions show
the log-likelihoods obtained for WDM realizations (𝑚hm > 108𝑀⊙)
and CDM-like realizations (𝑚hm < 106𝑀⊙) that match the flux ra-
tios, as indicated by the tolerance threshold for acceptance based on
the flux ratio summary statistic 𝑆 (Equation 4).

Several features apparent in Figure A1 dissuade us from using
the imaging data likelihood to directly constrain the properties of
substructure. First, we see that randomly generated populations of
halos, i.e. the “wrong” substructure models, sometimes result in
better fits to the imaging data than the “correct” population of halos
when we have imperfect knowledge of the source. Second, models
with fewer halos (shown in red) systematically improve the imaging
data likelihood relative to models with many halos (black). Both
of these features could arise from degeneracies between small-scale
structure in the lens mass distribution and small-scale features in
the source light. These considerations motivate the inclusion of the
importance sampling weights in Equation 6, which one can interpret
as an adjustment of the prior volume associated with the source
light model such that all dark matter models are equally likely when
constrained by imaging data alone.

We have experimented with re-running the analysis for some mock
systems with shapelets having 𝑛max = 20. This drives the 𝜒2

DOF to
values ≲ 1, which implies a certain degree of over-fitting. However,
the systematic bias in which models with fewer halos are preferred by
the imaging data persists, and we do not obtain significantly tighter
constraints on the main deflector mass profile.

APPENDIX B: THE EFFECT OF MULTIPOLES ON
SUBSTRUCTURE CONSTRAINTS

Shortly after this work appeared, Cohen et al. (2024) (hereafter C24)
claimed that the presence of multipole perturbations to galaxy den-
sity profiles – in particular, the 𝑚 = 3 and 𝑚 = 4 moments that we
considered in this work – preclude inferences of substructure proper-
ties from quadruply-imaged quasars. C24 draw this conclusion from
a series of lens modeling experiements in which they fit a model that
includes only 𝑚 = 3 and 𝑚 = 4 multipole perturbations to the image
positions and flux ratios of mock lenses perturbed by substructure.
C24 speculate that a minor difference in the modeling of the position
angle of the 𝑚 = 4 term, 𝜙4, explains the discrepancy between their
findings and the constraints on substructure properties we obtain
from analyzing only the image positions and flux ratios of 25 mock
lenses (shown by the black posterior in Figure 18); we fix 𝜙4 to the
position angle of the underlying elliptical power law profile, while
C24 allow it to vary freely.

Using the methods discussed in this paper, we can investigate
the claims by C24 regarding the effect of multipole perturbations in
substructure inferences. To begin, we repeat the inference presented
in Section 5 assigning the same degree of model flexibility to the
multipole terms as advocated by C24. Specifically, we sample 𝑎3,
𝑎4, and 𝜙3 from the priors described in Section 4.2, but now allow
𝜙4 to vary freely between −𝜋/8 and 𝜋/8. Figure B1 shows the result
of analyzing the 25 mock lenses with a CDM ground truth using the
more flexible prior on 𝜙4. We emphasize that the mocks in our sample
have non-zero amplitudes of 𝑎3 and 𝑎4, and thus our simulations do
not have priors centered on the ground truth.

After marginalizing over 𝑎3, 𝑎4, 𝜙3, and 𝜙4, we obtain the black
posterior distribution shown in Figure B1. The blue posterior dis-
tribution in Figure B1 includes importance sampling weights that
enforce alignment between the 𝑚 = 4 term and the underlying el-
liptical power law profile to isolate the effect of a freely-varying 𝜙4
angle on the constraints. Assigning the same degree of flexibility to
the lens model as advocated by C24, we see no evidence for a system-
atic bias in the inferred model parameters, or a degeneracy between
multipoles and halos that would preclude the constraints shown in
Figure B1.
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Figure A1. The log-likelihood of the imaging data inferred for the four mock case study lenses after down-selecting on realizations that fit the observed flux
ratios, as indicated by the threshold applied to the 𝑆 statistic in each panel. The gray and red histograms shows values of the log-likelihood for realizations with
𝑚hm above 108𝑀⊙ and below 106𝑀⊙ , respectively. Vertical bars represent the log-likelihoods from fits to the mock data when portions of the lens and source
light model are known perfectly. Green vertical bars represent the log-likelihood obtained with perfect knowledge of the source. Black vertical bars represent the
log-likelihood computed with imperfect knowledge of the source. Solid lines correspond to the log-likelihood obtained with knowledge of the “true” population
of substructure, while dashed lines correspond to a smooth lens model fit to the mock lens.

To understand these results in the context of the claims by C24, we
note that for most problems there exists some other model besides
the one under consideration that can fit the dataset. C24 consider
a model in which only multipoles can resolve flux ratio anomalies,
and compute the required properties of the multipole terms in this
scenario. However, to conclude that models with substructure are
indistinguishable from lens models that include only multipoles, one
must actually calculate the likelihood function and demonstrate that
the data cannot distinguish the models statistically. The reason we
can constrain substructure properties, even with multipoles included
in the lens model with the same degree of flexibility as advocated
by C24, is that models with substructure reproduce the observed
data more frequently than lens models that include only multipoles.
C24 fundamentally cannot make statements regarding relative likeli-
hoods, and therefore the constraining power of the data, because they
do not include substructure in the model they use to analyze mock
data.

Models with substructure are also preferred by Bayesian model
selection, both in our sample of mock lenses the four cases considered
by C24. To demonstrate this, for the 25 mocks in this paper and the
4 generated by C24 we generate 600,000 possible lens models that
include both dark matter substructure and multipole perturbations,
and 600,000 lens models that include only multipole perturbations,
sampling 𝑎3, 𝑎4, 𝜙3, and 𝜙4 from their respective priors. For the 29
systems in consideration, we perform a Bayesian model comparison

by evaluating the posterior odds given the image positions and flux
ratios
𝑝
(
𝑀1 |𝑶img,𝑶f

)
𝑝
(
𝑀2 |𝑶img,𝑶f

) =
𝑝 (𝑀1)
𝑝 (𝑀2)

L
(
𝑶img,𝑶f |𝑀1

)
L

(
𝑶img,𝑶f |𝑀2

) . (B1)

Here, 𝑀1, represents the model that includes both substructure and
multipoles, and 𝑀2 represents the model that only includes multi-
poles. The first term on the right represents the ratio of our prior
beliefs regarding the probability of 𝑀1 and 𝑀2, and the second term
is the Bayes factor. For this test, we will ignore the multiple lines of
evidence pointing towards the existence of dark matter substructure
and assume that both models are equally likely. We can approximate
the Bayes factor from the number of accepted samples generated
under the Approximate Bayesian Computing appraoch outlined in
Section 2. We use a stringent acceptance threshold 𝜖 < 0.01 for
these calculations.

Figure B2 shows the distribution of the posterior odds for each
mock lens, with numbers greater than one indicating that a model
with substructure and multipoles is preferred relative to a model that
only includes multipoles. The 25 mocks we generate with a CDM
ground truth are represented by the black histogram, and the odds
for the four cases considered C24 are marked with vertical bars. One
in four of the mocks considered by C24 exhibits a notable Bayesian
preference (odds > 2) for substructure in the lens model, compared
with one in five of the mocks we generate.

From Figure B2, we conclude that the mock lenses considered
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Figure B1. The posterior distribution for Σsub and 𝑚hm obtained from
modeling only image positions and flux ratios for the 25 lenses created with
a CDM ground truth. The black posterior shows the result of analyzing the
mock data while allowing the orientation of the𝑚 = 4 multipole perturbation
to vary freely, and the blue posterior shows the effect of adding importance
weights that enforce alignment with the position angle of the underlying
elliptical power law profile.

by C24, which they use to support the claim that quadruply-imaged
quasars cannot constrain substructure properties, actually exhibit a
Bayesian preference for substructure in the lens model consistent
with what one expects in CDM. The four mocks considered by C24
have a joint Bayes factor (the product of the individual Bayes factors)
of 26. For the 25 mocks we consider with 𝑎3, 𝑎4, 𝜙3, and 𝜙4 allowed
to vary freely, we obtain a joint Bayes factor of 1140. These tests
emphasize the importance of a rigorous statistical treatment of the
problem in order to validate statements regarding the constraining
power of certain datasets over different models, and the importance of
validating modeling assumptions through tests on realistic datasets.
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Figure B2. The posterior odds ratios, or Bayes factors (Equation B1), for
the twenty-five mock lenses in our sample (black histogram), and the four
mock lenses considered by C24 (colored vertical bars). A number greater
than one indicates a Bayesian preference for a model that includes dark
matter substructure and multipole perturbations, while a number less than
one indicates a model with only multipoles is preferred. The dashed grey
vertical bar marks a Bayes factor of one.
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